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Abstract 

The growing emphasis on monitoring PV systems and the rapid evolution of diagnostic practices are 

improving the practical functionality of solar plants and reducing power output variability. In a 

photovoltaic (PV) solar plant, optical losses are crucial in determining overall energy production and yield 

across the year. Research has demonstrated the potential of using Geographic Information Systems and 

LIDAR data to estimate the shadowing effect on rooftop and commercial-scale PV systems over a 

broader range of areas throughout the year. By modelling geospatial data (LIDAR) along with the sun's 

path over a specific location, we can effectively determine the amount of time a system is shaded. 

Accurate estimations and analysis of the shadowing impact of PV panels would improve the annual 

energy yield assessment of the system and enhance estimation techniques for forecasting the solar PV 

energy penetration to the grid based on the plant's location and orientation. 

The study focuses on analyzing the underperformance PV string due to shading using LIDAR technology. 

It demonstrates shading performance in a simulated environment and compares it with actual data from 

a PV system. The study uses the Developmental Impact Analysis Tool from ArcGIS to estimate shading 

on a 3D model, employs Hillshade Analysis to generate a time series projection of the shading profile of 

a PV string in the system, and compares the impact on the reduction of DC power to the inverter. 

The Shading Factor, modelled from the LIDAR data, shows a close correlation with the shading factor 

and the actual DC Parameters from the studied PV String. The reduction of the DC Current as a result of 

the increase in the shading over the PV String was evident, therefore causing a reduced power output 

from the PV String to the inverter. The effect of the modelled module temperature on the DC voltage 

from the string was observed. 

Successfully estimating the duration and causes of shading would allow for implementing strategies to 

address shading through optimal placement and orientation and regular trimming or removal of 

obstacles. 
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1. Introduction 

In the past few decades, the global energy sector has significantly changed in favor of renewable sources. 

Of these, photovoltaic (PV) systems have gained a rapid growth rate worldwide. Falling costs, 

technological advances, and policies to lower greenhouse gases and increase energy independence drive 

growth. The PV market has been one of the fastest-growing global industries in recent years due to 

lower generation costs and local governments worldwide promoting grid-connected photovoltaic (PV) 

systems.  (Aslam et al., 2022) 

Australia has emerged as a significant force in the global solar energy market. The country's abundant 

solar resources and favorable policies have led to rapid PV adoption. In 2022, around 3.6 GW of new 

solar PV capacity was added to the grid, making up about 15% of the electricity mix in the Australian 

Electricity Grid. This growth is expected to continue, further establishing Australia as a leader in solar 

power generation (Clean Energy Report, 2023). The expansion in Australia, including residential rooftops 

and large-scale solar farms, is a testament to the country's commitment to sustainable energy  (Shaikh 

et al., 2023) 

With large-scale solar energy generation, monitoring these systems to ensure maximum efficiency and 

faultless operation is essential. While monitoring systems add to the cost, they are crucial for minimizing 

overall expenses in large PV installations and are even more critical for smaller plants. Performance issues 

in PV systems often stem from optical losses in DC components and electrical failures in both DC and AC 

systems. Significant problems within the DC system have been identified as leading causes of reduced 

output, highlighting the need for effective monitoring and diagnostics. (Alhmoud, 2023) 

Understanding the performance of PV systems is crucial. Accurate performance data ensures optimal 

efficiency and maximizes return on investment. (Nordmann et al., 2015). Performance analysis also helps 

identify potential issues, such as panel degradation or system inefficiencies, which can improve system 

reliability and longevity. (Skomedal et al., 2021). Moreover, performance monitoring is vital for grid 

management, especially in regions with high solar energy penetration, enabling better forecasting and 

integration into the grid. (Shaikh et al., 2023) 

2. Background 

The increasing reliance on photovoltaic (PV) systems for renewable energy generation necessitates 

thorough performance analysis to ensure efficiency and reliability. As PV installations expand globally, 

issues such as optical losses and electrical failures have been identified as significant contributors to 

system underperformance.  

Recent research indicates that approximately 20-25% of photovoltaic (PV) systems experience 

underperformance, often due to soiling, shading, and component degradation. These factors can lead 

to up to 30% energy losses in affected systems, particularly in regions with high dust levels or suboptimal 

maintenance practices. (Aslam et al., 2022). Furthermore, a study revealed that nearly 10% of installed PV 
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systems suffer from electrical faults that can reduce efficiency by 15-20% if not promptly addressed. (Pillai 

et al., 2019) . These statistics highlight the necessity for rigorous performance analysis to mitigate losses 

and optimize PV system efficiency. 

3. Literature Review 

This section discusses the approach of identifying the causes and the share in the reduction of PV output 

due to various underlying factors. The following sections will provide a preliminary study of shadowing 

effects on PV systems, with a brief analysis of temporary and permanent obstructions on the PV system. 

As part of this chapter, different methodologies and models are used to estimate shading impacts. We 

also propose a research gap, including both traditional empirical approaches and more advanced 

mechanisms such as LIDAR-based analysis or simulation models. This gap is not just a point of interest 

but a crucial aspect that requires the attention and contribution of all involved in the field of PV system 

performance analysis. 

3.1 Overview of the causes of loss of performance in Photovoltaic 

Power Plant 

PV solar power plants encounter suboptimal performance due to various optical and electrical losses 

Figure 1. The optical losses are caused by reduced irradiance on the PV panel, partial shading losses, far 

shading losses, near shading losses, incident angle modifier (IAM) losses, soiling losses, potential induced 

degradation (PID) losses, temperature losses, light-induced degradation (LID) losses, PV yearly 

degradation losses, and array mismatch losses which predominantly occurs on the DC components of 

the PV system. The impact of shading on the performance of PV solar systems. It notes that even partial 

shading of a solar panel can significantly reduce its output and that shadowing on one panel can affect 

the production of the entire string or module. The research presents a case study in which shadowing 

reduced the energy yield of a PV solar system by up to 50%. (Alhmoud, 2023) 

 

Figure 1 System Loss Diagram from Aurora Solar 

 

Figure 2 Power Losses in PV Systems 
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The electrical losses have been classified into DC plant and AC plant losses. (Alhmoud, 2023)  

DC Plant Losses: This includes losses such as environmental conditions (Temperature, Wind Speed), 

Light-Induced Degradation of the PV Module, Cable Losses, Diode Losses, mismatch losses caused 

by temperature, and faults occurring on the DC components on the PV system.  

AC Plant Losses include losses such as the inverter, transformer, and transmission line losses.  

These losses can impact the efficiency and performance of the solar cells and the overall system.   

  

 
Figure 3 PV Plant Losses of a plant  (Alhmoud, 2023) 

 
Figure 4 PV Plant Losses of a plant (Alhmoud, 2023) 

 

  

3.2 Causes of DC Losses in PV Plants   

Degradation of PV Module  

Over time, several external factors can cause a gradual decline in the performance and efficiency of 

photovoltaic (PV) systems. These factors include temperature, humidity, UV exposure, and mechanical 

stress. Furthermore, potential-induced degradation (PID) can occur due to voltage stress on PV modules, 

leading to performance degradation. Another factor is light-induced degradation (LID), which can occur 

in certain types of PV cells, causing a decrease in performance under initial exposure to sunlight. (Munoz 

et al., 2011). 

In addition to PID and LID, other potential factors such as corrosion, delamination, and encapsulant 

discoloration can also contribute to PV degradation. These factors can reduce the system's overall 

output, negatively impacting its efficiency and lifespan. Therefore, monitoring and maintaining the PV 

system regularly ensures optimal performance and longevity. (Jordan et al., 2017). 

Module Temperature  

Module temperature significantly influences PV module performance. As the temperature rises, the 

conversion efficiency of PV modules generally decreases, leading to a decline in actual performance. 

(Dash and Gupta, 2015). The temperature positively impacts short-circuit current but has a negative 

impact on open-circuit Voltage and Power output.  
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Various studies have shown that as the solar cell temperature increases, its output power decreases by 

about 0.37 W, and its electrical efficiency reduces by 0.06% for every one °C rise. In addition, it has been 

observed that the temperature of the solar cell increases by 4.93°C and 2.64°C, respectively, for every 

100 W/m2 increase in irradiation with and without a cooling system. Finally, at an irradiation of 1000 

W/m2, the electrical efficiency of solar cells decreases by 0.06% for every one °C increase in temperature. 

(Rahman et al., 2015). These findings highlight the importance of maintaining optimal operating 

temperatures for solar cells to achieve maximum efficiency and output power.  

Fill-Factor  

Minimizing the fill factor loss is crucial to maximizing the efficiency of solar PV modules. Fill factor loss 

refers to the decrease in the fill factor of a solar cell, which can be caused by various factors such as 

series resistance (Rs), shunt resistance (Rsh), and J02 recombination. (Khanna et al., 2013). The fill factor 

(FF) is a critical parameter of a module that determines the effectiveness, and it should be as close to 

unity as possible on the I-V curve. The fill Factor is the ratio of the maximum power (Pmax) of a solar PV 

module to the product of its open circuit voltage (VOC) and short circuit current (ISC). By optimizing the 

fill factor, we can enhance the performance of solar PV modules and make them more efficient. (Sharma 

and Purohit, 2014).  

Soiling  

Soiling refers to accumulating dirt and pollutants on photovoltaic modules, which can reduce their 

efficiency and energy production. (Pavan et al., 2011). It forms a thin screen over a module and thus 

minimizes the light capture of the PV panels. Different types of dust, including sand, ash, red soil, 

limestone, calcium carbonate, and silica, have varying impacts on PV performance. (Al Siyabi et al., 2021). 

A study found that the losses contributed by soiling in dry areas would reach up to 15%, leading to a 

significant drop in Annual Yield if not maintained. (Zorrilla-Casanova et al., 2013). 

Potential Induced Degradation  

High voltages between the PV cells and the module's grounded frame primarily cause PID. This voltage 

stress can result in the migration of charged particles within the module, leading to performance 

degradation. (Jordan et al., 2017) . PID-shunting (PID-s) is the most common type of PID in conventional 

p-type c-Si PV modules. It is closely associated with reduced shunt resistance (Rsh) and increased dark 

saturation current due to recombination in the space-charge region. Sodium ions (Na) play a prominent 

role in the evolution of PID-s, causing shunting and efficiency degradation. (Luo et al., 2017). Potential 

induced degradation (PID) is a performance degradation mechanism in PV systems due to stray currents, 

leading to a gradual loss of power of up to 30% or more. PID generally occurs in PV systems with 

ungrounded inverters (Kim et al., 2021) 
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PV Module Orientation and Tilt Angle  

PV module orientation has different impacts on grid operation, including power gradients, voltage 

issues, and asset overloading. Overall, the choice of PV module orientation should consider the trade-

off between peak power reduction and energy yield to minimize losses. (Tröster and Schmidt, 2012). 

Optimizing PV module performance under inhomogeneous soiling conditions, including mounting 

orientation, can lead to up to 65% higher output power. (Hanifi et al., 2020). 

Shading  

Shading losses refer to reduced solar energy output caused by obstructions such as buildings, trees, or 

other objects that cast shadows on solar panels. By reducing the amount of sunlight that reaches the 

panels, shading can significantly impact the performance of a solar photovoltaic system. (Pachauri et al., 

2021) Shading can significantly damage traditional crystalline PV modules, leading to performance 

differences among PV cells and potentially permanent damage to the modules. (Zsiboracs et al., 2021), 

causing a reduction in the annual energy yield from the Solar PV Plant. A study (Brecl and Topič, 2011) 

It was found that 100,000 roof programs showed a decrease in the annual energy yield due to shading.  

 

3.3 Preliminary Study  

3.3.1 Shadowing Effects on PV  

When a PV module is partially shaded, the shaded cells can act as resistors, reducing the module's overall 

voltage and power output. Shading effects can also cause hotspots in the PV module, damaging and 

reducing module life. Careful site selection, module placement, and design considerations are essential 

to minimize shadowing.   

Partial shading conditions (PSC) in a photovoltaic (PV) array can result in power losses due to a mismatch 

in PV module characteristics. Shaded modules receive lower irradiance levels and have reduced current 

output compared to unshaded modules. (Saiprakash et al., 2021) 

  

3.3.2 Current Estimation Techniques for Shading Losses in PV  

Several research works were implemented to estimate the shading occurring in the system through 

sensory and non-sensory approaches. Shading models that estimate the drop in annual yield and 

performance due to full shading and partial shading conditions have been implemented to understand 

better the reversible and irreversible performance drops occurring in the system.   

The study by (Satpathy and Sharma, 2020) discusses a novel technique to detect partial shading in solar 

PV systems without disconnecting the load. The method uses the voltage difference across each row of 

the PV array to indicate shading severity. The study also proposes a static and dynamic reconfiguration 
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method to mitigate the effects of shading and enhance the power output. However, this avoids the 

conventional methods of detecting partial shading on short circuit current (Isc) by isolating the load 

from the PV array. This is impractical and undesirable for large-scale or stand-alone PV systems. 

Implementing this technique on MATLAB using a 3x4 120W polycrystalline PV array showed successful 

detection of PSC on time.   

On analyzing the study of (Garcìa et al., 2003)The paper proposes a mathematical shading model to 

estimate the reduction of annual yield due to shading in photovoltaic (PV) systems. The model is based 

on the calculation of the influential shading factor (FES), which depends on the shaded fraction of the 

array area (FGS) and the number of blocks affected by shade (NSB) (A block is a group of solar cells 

protected by a bypass diode) The model is applied to the directional components of the in-plane 

irradiance, such as direct and circumsolar radiation. Experimental measurements on multiple 

photovoltaic arrays with different configurations and shading profiles validate the model. The method 

has been validated by a broad experimental testing campaign on several shaded PV arrays with different 

configurations and shading profiles. The results show that the method performs better than other 

existing models.   

Correspondingly, the IV Curve of the module is used in (Skomedal et al., 2020) to estimate the 

performance of a photovoltaic (PV) module under partial shading conditions based on an explicit 

analytical model. This method uses only I-V data from the manufacturer or measured at reference 

conditions. It derives a direct voltage expression in terms of current for a single PV cell, a submodule, 

and a PV module. Experiments in different outdoor shading scenarios verified the effectiveness of this 

method. The method is fast and accurate and can predict power generation, evaluate MPPT strategies, 

and design control schemes for PV systems.   

Based on the reviewed studies, shading on PV panels can be detected by analyzing the system's IV 

profile and power parameters after the installation process. (Zhang et al., 2021). However, a more 

practical approach for estimating shading conditions would be to consider the shading needs of the PV 

system at a given location and orientation, which would help improve the accuracy of annual yield 

estimations. 

The method proposed by (Goss et al., 2014) uses the shading loss algorithm to generate an irradiance 

map of the array for each time step for individual cells or cell portions. The horizon datum and the PV 

array layout are translated into a dome of sky patches, each with a Boolean value indicating the state of 

shaded or unshaded by any obstruction. The model then uses a time series simulation, where the 

irradiance map for each cell or cell portion is calculated for each time step based on the sun position 

and the sky-patch status. The model's validation against two chimney shading scenarios showed an 

error of less than 1%. The model is also optimized for different sky-patch resolutions and computation 

times. The model can be integrated with cell performance and energy yield models to account for the 

shading losses due to partial or complete shading of PV arrays.   
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The method proposed by (Capdevila et al., 2013) Uses a shading analysis tool embedded in a CAD 

software environment. The tool can model the shading effects of arbitrary tracker geometries, module 

layouts, and string concatenation schemes. It can also account for the topographical features of the site 

based on digital elevation model data. The tool calculates the shadow fraction of each area element of 

the tracker at any time step. Then, it solves the equivalent circuit to estimate the electrical shadow loss—

the tool claims to improve the accuracy of energy conversion predictions for one and two-axis vertical 

trackers.   

An advanced technique that uses a video camera to track shading across the day has been implemented 

by (Meyers et al., 2016) ; the study presents a parameterized shade loss model called the "Fast Shade 

Model" (FSM) that allows for the calculation of system-level power loss based on three input parameters. 

Shading is estimated by creating a model of the test system in SketchUp using geolocation and shadow-

casting features. Images of the shade on the array at any time of interest are built using Ruby scripting 

in Sketchup and subsequently analyzed using Python script to determine the area of each shaded cell. 

This approach demands time-stamped imagery and building models to study the sun's path and 

estimate shading on PV systems.  

3.4 LIDAR and GIS Technology  

Geographic Information Systems (GIS) are technologies that merge spatial or geographic data like maps, 

satellite imagery, and LiDAR data with attribute data such as land use, population, and infrastructure. 

They enable the analysis, visualization, and comprehension of patterns and relationships in the real 

world. GIS allows capturing, storing, manipulating, analyzing, and presenting geographically referenced 

data. (Nguyen et al., 2012a)                  

 

Figure 5 Illustration of Geographic Information System 

 

Figure 6 Illustration of LIDAR Imaging 

LIDAR, or Light Detection and Ranging, is a remote sensing technology that uses pulsed laser light to 

measure variable distances to the Earth's surface (Lukač et al., 2014). Currently, LIDAR has various 

applications in remote sensing, including autonomous vehicles, weather forecasting, astronomy, and 

more. This technology uses a laser beam emitted from a sensor and directed toward the target. The 

laser beam reflects off the target and returns to the sensor, where it is detected and measured. Lidar 

accurately determines the distance to a target by measuring the time a laser beam travels to and back 

to the target.  
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It has a potential application in renewable energy planning by analyzing the shadowing effects and 

identifying suitable locations for solar installations by combining 3D models of the urban environment 

with sun position data, which allows for the calculation and visualization of shadows cast by buildings.  

 

3.5 Application of LIDAR and GIS in the Renewable Energy Industry  

Site Selection and Resource Assessment:   

GIS and LIDAR technology can determine suitable locations and estimate the potential of renewable 

energy resources for renewable energy projects such as wind farms, solar farms, or hydropower plants 

(Abd Latif et al., 2012)Through analysis of various factors in meteorological data sources such as wind 

speed, solar radiation, topography, land use, and environmental constraints, GIS and LIDAR can help 

optimize the site selection process and provide accurate and detailed information on the availability and 

variability of the resources, which is essential to reducing risks and ultimately minimizing costs associated 

with these projects. (Radosevic et al., 2022) 

Environmental impact assessment:   

On analyzing processed data sources like biodiversity data, land use data, and social data, the 

environmental impacts of renewable energy projects on wildlife, ecosystems, and cultural heritage are 

studied. Implementing this model during the pre-assessment of a project helps identify the vulnerable 

areas and could suggest mitigation measures to reduce the negative impacts. During the operation and 

maintenance phases, the processed information of GIS and LIDAR helps monitor the environmental 

performance of renewable projects. (Xie et al., 2022) 

Asset Management  

Renewable energy assets, like wind turbines, solar panels, or hydroelectric generators, can be effectively 

monitored and managed using GIS and LIDAR technologies. By analyzing real-time data, such as SCADA 

data, weather patterns, or maintenance information, GIS and LIDAR can assist in optimizing the 

performance and upkeep of these assets, ultimately enhancing their reliability and efficiency. (Schultz, 

2012) 

The technology is also utilized to monitor the structural soundness of assets and identify any defects or 

damages that may impact their performance or safety. Using different types of sensors like 

accelerometers, strain gauges, or thermal cameras, GIS and LIDAR can supply precise and timely 

information regarding the condition of assets, which can help prevent failures or accidents. (Zhong and 

Haiyan, 2023)The processed information from the sensors, combined with predictive analytics via 

Machine Learning and AI, would help schedule and optimize maintenance strategies that ensure the 

structural integrity of the project's components.  
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3.6 Estimation of Shading and Annual Yield through LIDAR  

Studies and research have utilized LIDAR and GIS technology to address challenges in the solar and 

wind energy industry.  The previous sections focused on addressing the reasons behind the subpar 

performance of PV on the DC side. As a potential solution, LIDAR and GIS have been examined to 

understand better the current models for shading and estimating energy yield. Various researchers have 

developed solar radiation models that utilize LiDAR data and GIS tools to calculate the direct, diffuse, 

and reflected irradiances on urban surfaces while considering the shading effects of the surrounding 

environment.   

A study by (Gawley and McKenzie, 2022) They investigated the effectiveness of using GIS and 

orthophotography datasets as components of GIS to model the energy yield of PV systems on rooftops. 

The study adopted a methodology that involved comparing and analyzing the digital surface models 

(DSM) derived from light detection and range (LiDAR) and orthophotography DSM data using UK-

standardized PV formulas. The methodologies from various studies have been analyzed to understand 

the PV annual yield estimation through shading models generated from Skyview Factor derived from 

Raster DSM and DTM data generated from LIDAR and GIS datasets.  

3.6.1 Digital Terrain Map (DTM)  

Digital Terrain Model (DTM) models the earth's surface without structures like buildings, vegetation, or 

other objects. It only includes natural terrain features such as hills, valleys, and plains, essential in 

understanding natural terrain features, modelling water flow, assessing landslide risks, and planning 

environmental studies, civil engineering, and land use planning. DTM contains crucial and accurate 

terrain information without any impact on natural or artificial objects. (Nguyen et al., 2012b) 

3.6.2 Digital Surface Map (DSM)  

The DSM (Digital Surface Model) plays an essential role in the learning process for estimating solar PV 

(photovoltaic) capacity in urban areas. It can be used to represent urban landscapes and buildings 

accurately and accurately, and it has resulted in an accurate model of sunlight with shading effects. DSM 

typically uses raster sizes in the range of 0.3 m to 1 m and is ideal for assessing existing solar rooftops 

in urban areas (Freitas and Brito, 2017).  By simulating shading effects, especially during the summer 

months, the study could identify potential losses in solar irradiance due to shading from surrounding 

buildings and other features captured in the DSM. (Yousuf and Siddiqui, 2018).  
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Figure 7 Illustration of Digital Terrain Map 

 
Figure 8 Illustration of Digital Surface Map 

             

3.7 DTM and DSM-Based Shading Models  

Pixel-Based Shading Model: Pixel-based shading models in computer graphics are often used to 

define the color of each pixel in the generated image. They calculate the color of each pixel using lighting 

conditions, object surface type, and camera position. In PV shading, pixel-based shading models can be 

used to estimate the shading effect of nearby objects on the solar irradiance of a PV module. (Li et al., 

2016). The model divides the sky dome into smaller components and calculates luminosity, and each 

element gets calculated. In addition, it considers the effect of nearby obstacles on the beam and the 

propagating radiation component. According to a study (Yousuf and Siddiqui, 2018) The proposed 

method is straightforward, accurate, and applicable to existing and future buildings.  

Vector-Based Shading Model: The vector-based shading model estimates the outcomes of shading 

surrounding objects at the sun irradiance of photovoltaic (PV) modules. The model considers buildings, 

trees, and terrain capability-shading objects and applies a voxel filter to reduce the factors inside the 

LiDAR information. (Liao et al., 2019). The paper proposes a clear-sky coloration index to compare the 

shading results on extraordinary surfaces. The model uses a voxel clear-out to reduce the factors inside 

the LiDAR statistics and Delaunay triangulation to create a mesh of shading triangles. The paper (Lingfors 

et al., 2018) It also discretizes the roof sides into grid points and estimates shading by projecting them 

along vectors pointing at sky sectors.  

SOL Algorithm: The SOL model is a LiDAR-based method that calculates hourly solar radiation for each 

site in a digital surface model (DSM) and estimates shadows caused by surrounding buildings and 

vegetation. The algorithm uses airborne LiDAR data DSM to model solar radiation on the roof. SOL 

models are more accurate and efficient than others and can handle complex urban features more 

accurately (Freitas and Brito, 2017). 

The paper also compares the results of SOL with other shading models. In PV shading, the SOL model 

can estimate shade loss in PV arrays and optimize the installation of PV modules on rooftops. The SOL 

model  (Li et al., 2015) Compares the results with other shading models to calculate the solar radiation 

of rooftops in San Francisco.   
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Ray-tracing algorithm: Ray tracing is used in computer graphics to create realistic lighting effects in a 

virtual environment (Tian, n.d.). The model calculates the color of each pixel based on the light path 

falling on objects in the digital surroundings; the pixel contains the skylight values for each sky band, 

determining the incident radiation at the sensor points. The algorithm is a heavily hardware-intensive 

task and is critical based on the computed resolution and density of the pixels. (Liao et al., 2019) 

Hillshade Analysis FROM Arc GIS: Hillshade analysis is a beneficial feature in ArcGIS that generates a 

shaded comfort raster from a floor raster by considering factors that include the angle of the illumination 

source and shadows. Hillshade evaluation estimates the shading outcomes on PV modules. (Gawley and 

McKenzie, 2022). The paper also proposes a new technique for deciding on the most desirable rooftops 

for PV setup based totally on the consequences of hillshade analysis. (Li et al., 2015). Additionally, it 

utilizes hillshade evaluation to estimate the solar capability of rooftops in urban regions. This author also 

uses a viewshed analysis to perceive the visible and shaded areas of the rooftops and a solar radiation 

version to estimate the sun irradiance on the rooftops. 

Multiresolution shadowing: The multi-resolution shading model calculates the shading effect of the 

surrounding environment on solar radiation in photovoltaic (PV) modules. The model considers low-

resolution and high-resolution grids of land and buildings, used to calculate the shadow parameters of 

each cell in a grid generated from LiDAR data -it is more efficient and accurate than using a grid; it can 

capture the shadow effects of environmental and urban factors area. (Lukač and Žalik, 2013), also 

accounts for explicit shade vegetation using the leaf area index. Grid generated using LiDAR data using 

a spatiotemporal multiresolution-based shading method to calculate shading coefficients for each cell. 

(Lukač et al., 2014). This paper also compares the results of the proposed method with other shading 

models to confirm its accuracy.  

QCPV-Tuning model: The QCPV-Tuning model is a method used to calculate the effect of shading in 

photovoltaic (PV) systems. The model derives module orientations and losses from quality-controlled PV 

power generation data and uses a tuning routine to correct cyclic systematic deviations due to shading. 

(Killinger et al., 2017). The QCPV-Tuning model can help calculate shading losses in PV arrays and could 

provide PV installation of sound modules on roofs. In a study (Lingfors et al., 2018)The QCPV-Tuning 

model is compared with other shading models to calculate shading losses in PV arrays. Based on the 

QCPV-Tuning model results, the paper also proposes a new method to select the optimal roof for PV 

installation.  
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Skyview Factor:  

 

 

Figure 9 Skyview Factor of a Point with Obstacles 

 

Figure 10 Skyview Factor derived from Fish eye camera 

Skyview Factor: SVF measures a location's openness to the sky, which directly influences the amount 

of solar radiation a surface receives. In solar Energy studies, SVF is used to estimate the shading effect 

on building surfaces (facades), which is included for accurate solar irradiance calculation. (Nguyen et al., 

2012a). SVF model potentially replaces the relatively slow and hardware-intensive vector-based 

shading analysis.  Also, it models the shading factor on the roofs and facades to estimate the annual 

solar insolation on the facades of the building effectively. DSM Rasters have been modelled to calculate 

SVF for a given time and day of the year. Sun Path tool integrated with DSM Rasters estimates the SVF 

of a given point across the year. (Yousuf and Siddiqui, 2018).  

Based on the observations of the above studies, the analysis model's performance varies based on the 

location and the data sensitivity.   

 

3.8 Research Gap 

Although considerable progress has been made in both photovoltaic (PV) technology and shading 

analysis, there are still some critical areas that most existing methodologies fail to handle well enough. 

This eventually prevents a complete solution from being provided to reduce the underperformance of 

PV strings due to shading.  

To improve the long-term reliability of the system, the underlying impacts of shading effects, such as 

power losses due to Hotspot Effects, on PV panels and the resultant system efficiency caused by shading, 

especially in urban environments, could be studied. Such gaps are evident when looking at the use of 

LiDAR technology in shading analysis across the DC side of PV systems. The study gaps identified are: 

3.8.1 Limited Utilization of LiDAR with Performance Models: 

The solar PV Industry has been accommodating Lidar technology for estimating annual energy yield by 

using Point Cloud Data from LiDAR Mapping Sources and identifying potential obstructions that could 

impact solar irradiance. However, its application to understanding the impacts of shading analysis from 

a string level remains unexplored. 
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One of the studies that included the LiDAR scanning technology applied by (Bocullo et al., 2023) It was 

a successful tool for evaluating the potential shading impacts on a location's solar PV array. Moreover, it 

was a significant element used in conjunction with UAV photogrammetry to understand how the shading 

impact on all units of Lithuania might be reduced. The study showed the layout optimization to avoid 

shading, which, in turn, focused on the aspects of system yield rather than the performance of individual 

strings in the array. 

Another study (Lingfors et al., 2018) Models a set of PV Systems through LiDAR and performs shading 

analysis to estimate the overall simulated yield in comparison to the actual yield. However, observing the 

PV System output fails to address the impact of shading caused on a string level from the DC Side, which 

would be necessary to address the long-term performance impact on the system. 

3.8.2 Underdeveloped Predictive Analytics for Shading Impact: 

Current shading studies using LIDAR mainly focus on static shade impacts but fail to estimate the dynamic 

nature of shading patterns due to seasonal changes, weather variability, and the movement of 

surrounding objects.  

Although some previous work with shading estimations (Lingfors et al., 2017) It identifies the shading 

regions through roof segmentation and modelling from LiDAR but does not account for the impact of 

PV systems on dynamic shading objects throughout the year. 

(Vega-Garita et al., 2023) Discusses a novel approach to assessing the impact of shading in PV Systems 

by extracting the skyline from the smartphone. However, this method uses a static snapshot from a 

panoramic image captured by a smartphone along with LIDAR. This mythology does not consider the 

impact of the sun's movement across various seasons in a year. 

The suboptimal performances of the PV array/string failed to be recognized due to a lack of real-time 

monitoring systems that use LIDAR to dynamically adjust PV operational parameters to identify and 

mitigate the causes of underperformance. 

 

3.9 Summary 

The above section conducted an up-to-date literature review of the existing studies. Firstly, the literature 

review identifies the types of losses in a PV System. After further studying the underlying factors, the 

study also focuses on the causes and effects of PV Performance losses due to various environmental and 

system-level factors.  

Further downsizing our research domain to shading losses, which account for up to 10 to 30% of the 

losses, the literature review includes studies on understanding the PV System performance of variable 

types of shading, leading the study to focus on the existing estimation techniques employed for shading 

on PV Systems. 
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Studies on various conventional techniques of estimating shading extent on PV Panels, such as using 

Solar Assessment Tools like Solar Pathfinder, Solmetric Suneye, and other software tools such as PV syst 

and SAM, were understandable to be deployed on small geographical extents. The studies on the 

estimation of shading techniques did not involve comparing the performance of a PV System on the DC 

side, leading to further diversification of the study towards LiDAR-based estimation of PV System 

Performance. 

A Literature review was performed on Various studies that employed the LiDAR technologies focussed 

on annual yield-based performance analysis through various LiDAR processing techniques and diverged 

to the current methodologies on shadow estimation methods. However, the importance of a PV system 

performance from the string level to further increase the system operating efficiencies through pre-

estimation of shading points on PV Panels across the year would result in reducing the impact of 

shading-related power losses due to hotspots, therefore increasing the Long term reliability of the PV 

Systems through improvised monitoring strategies to detect temporary and permanent constraints on 

the PV Panel. 

In the upcoming sections, LiDAR data will be utilized to develop time-series shadow estimation 

techniques to analyze the impact of shadows on the power generation of a PV string throughout the 

day. 

 

4. Experimental Methods 

Introduction 

Shading caused by surrounding structures like building facades, when accurately identified and their 

impacts being quantified on a PV String through LIDAR Data, would reduce the DC power output from 

the PV System. This reduction in performance is directly proportional to the extent and duration of 

shading, leading to measurable losses in energy yield at a given period. By effectively mapping and 

analyzing the shading patterns, predicting and mitigating these losses through layout updates will likely 

optimize the overall efficiency of PV installations and gain a deeper understanding of the reaction to 

Power output due to the shading effects. 

The table below shows the breakdown of the hypothesis and the motive of our study. 

Cause Shading caused by surrounding Structures 

Measurement Tool / 

Sources 

LIDAR Data is used to identify and quantify the dimension and spatial orientation of 

surrounding structures 

Effect Reduction in the DC Power output from the string 
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Proportional 

Relationship 

The reduction in the DC Power output's performance is hypothesized to be due to 

the extent and duration of shading. 

Objective 
The goal is to estimate and understand the shading impact on the DC side of the PV 

system, mitigate these losses, and improve PV Systems' efficiency. 

 

This section will outline a brief methodology for addressing the issue of rooftop shading from a broader 

perspective. A good data source is essential for estimating the shading regions of rooftops effectively 

and reliably.  

 

 

Figure 11 Generic workflow of the study 

 

The flowchart shown in Figure 11 is crucial in providing a visual sequential order of sections that progress 

the study flow, starting with identifying required data types and ending with validating and calibrating 

the results. It serves as a guide, ensuring a systematic and comprehensive approach to the study. 

 

4.2 Identifying Required Data Types and Potential Sources 

LiDAR: High-resolution Lidar data is essential for accurately modelling a three-dimensional map of the 

area to be studied. The resulting point cloud from LIDAR data would contain a million data points that 

capture objects' spatial information and dimensions, such as building blocks, trees, and other shading 

potentials. The high level of LiDAR is crucial for pre-classifying point clouds into various classes, such as 

Buildings, High Vegetation, Medium Vegetation, and Low Vegetation, for estimating shading impacts on 

photovoltaic (PV) systems because it provides a detailed and precise representation of the surrounding 

environment. (Gergelova et al., 2020) 
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ELVIS is a platform offered as a collaboration between DCS Spatial Services and GeoScience Australia to 

deliver high-quality and valuable Elevation and Point cloud data used widely across various sectors, such 

as engineering, energy, and environmental management.  

Figures 12 and 13 below show the LAS LiDAR Point cloud of UNSW, Kensington Campus, segregated by 

elevation color code. The raw LAS data is sourced from the GeoScience Australia platform and accessed 

through the Elevation and Depth portal, which provides free access to high-quality elevation data, LIDAR 

Point Clouds, and the Digital Elevation Model (DEM). 

 
Figure 12 LAS File in Class Symbology 

 
Figure 13 LAS File in Elevation Symbology 

 

Meteorological Data: 

Post-modelling the 3D objects from LiDAR, the high-accuracy meteorological Data containing key 

parameters are required to simulate a PV Plant's ideal and shaded conditions. Parameters such as Solar 

Irradiance in the form of GHI, DHI, and DNI are needed to determine the PV Plant output; other 

parameters such as Air Temperature, Windspeed 10m, and Cloud cover are required to compute Module 

Cell Temperature that adversely impacts the PV Power output. Additionally, the meteorological data 

would be evident in validating and calibrating LiDAR-based models, ensuring the reliability and accuracy 

of the study. The table below compares different sources and the origin and variability of weather data 

parameters. 

 

 
Source 

Data 

Acquisition  
Variability Accuracy Accessibility 

1 
BOM (Bureau of 

Meteorology) 

Primarily ground-

based weather 

stations, satellite 

observations, and 

radar systems 

within Australia. 

High spatial and 

temporal 

variability due to 

the dense network 

of ground stations 

and advanced 

forecasting 

models. 

High accuracy within 

Australia due to 

localized data 

collection and 

advanced 

meteorological 

modelling. 

(Govekar et al., 2022) 

It is freely 

accessible to the 

public, but some 

specialized data 

products may 

require a 

subscription or 

request. 
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2 SOLCAST 

Satellite data (e.g., 

Himawari-8), 

ground-based 

stations, and 

proprietary 

algorithms for 

solar radiation and 

weather 

forecasting. 

Moderate 

variability; 

provides high-

resolution data (1-

5 km grid) with 

updates every 5-

15 minutes. 

High accuracy for 

solar radiation 

forecasts, particularly 

in regions with strong 

satellite coverage. 

Accuracy may vary in 

areas with less 

frequent satellite 

updates. 

(Pham et al., 2022) 

Data is accessible 

via API with free 

and paid tiers; full 

access requires a 

subscription. 

3 

 

PVGIS 

(Photovoltaic 

Geographical 

Information 

System) 

Uses satellite data 

(e.g., Meteosat), 

reanalysis data, 

and ground-based 

stations for solar 

radiation and 

climatological 

parameters. 

Low to moderate 

variability; 

provides data at a 

lower resolution 

(3-4 km grid) with 

historical datasets 

available. 

Generally accurate for 

long-term solar 

energy predictions, 

though short-term 

forecasts may have 

lower precision. 

(Sayago et al., 2020) 

Freely accessible 

to the public 

through a user-

friendly web 

interface and API. 

4 NASA 

Satellite data (e.g., 

MODIS, CERES), 

reanalysis datasets 

(e.g., MERRA-2), 

and ground-based 

observations. 

Moderate 

variability with 

global coverage 

offers high-

resolution (1-10 

km grid) and 

lower-resolution 

data depending 

on the dataset. 

High accuracy for 

global scale 

meteorological data, 

though localized 

accuracy may vary 

based on the 

resolution of the 

dataset used. 

(Liu and Matolak, 

2018) 

It is accessible to 

the public 

through various 

portals, including 

NASA POWER 

and Earthdata, 

with APIs 

available. 

5 

NOAA (National 

Oceanic and 

Atmospheric 

Administration) 

Satellite data (e.g., 

GOES, JPSS), 

ground-based 

stations, buoys, 

and reanalysis 

datasets (e.g., 

NCEP/NCAR). 

High variability 

due to extensive 

global network 

and frequent 

updates. 

High accuracy for 

global and regional 

forecasts, with 

comprehensive 

models and data 

assimilation 

techniques improving 

reliability. 

Freely accessible 

to the public 

through multiple 

portals and APIs; 

specialized data 

may require a 

subscription or 

data request. 

 

Table 1 Comparison of Weather Sources 

On comparing the sources and various studies such as, (“Solcast,” 2019) and (Yang and Bright, 2020) 

Validate Solcast's improved Data quality and consistency and its utilization for research across various 

sectors compared to other sources. Considering the 5-minute periodical availability of historical data, 

validating the PV performance from the string would be essential. Critical parameters such as GHI, DHI, 

DNI, Air Temperature, wind speed_10 m, Cloud Coverage, and Zenith Angle were requested from 01-

01-2020 to 04-07-2024. 

 



The underperformance of PV Systems on the DC Side  

Understanding shading Effects in PV Systems using LIDAR 

 

 

 

18 
 

PV System Data and Schematics: 

PV system data is crucial for accurately estimating the impact of shading on photovoltaic (PV) systems 

when using LIDAR technology. This data encompasses various parameters that directly influence the 

performance and efficiency of PV installations.  

PV System Schematics: A detailed diagram that visually represents the layout and components of the 

installed PV System. The schematics document is essential to understanding the nameplate details, such 

as the system's rated capacity, including the tilt and orientation of the PV System. The document would 

have a detailed illustration of a single-line diagram explaining the connection layout of the active and 

passive components on both the DC and AC sides. 

The PV Schematics of the TETB Building and UNI-GYM were obtained from DARTH administrators, and 

the PV schematics of NIDA were procured from the NIDA Sustainable Manager and are shown in Figure 

14-17. 

 
Figure 14 PV Schematics of 

NIDA 

 
Figure 15 PV Schematics of 

TETB 

 
Figure 16 PV Schematics of 

QUAD 

 
Figure 17 PV Schematics of 

UNI GYM 

 

PV System Data: Primary data were chosen based on site selection. However, since the study aims to 

analyze the string-level DC Power Performance from an actual system, central potential site locations 

only had the Inverter AC output. 

DARTH (Data Resource Time- Series Hub) is an Energy Database that includes critical site data like PV 

Generation, building energy consumption, and weather data gathered across buildings in the UNSW 

Sydney campus and other home properties across Australia. The DARTH is easily searchable and 

continually updated with real-time data, vital for enhancing research activities in renewable energy and 

future electricity grids. 

PV System data for site locations like TETB and UNSW GYM were accessed from DARTH, which has data 

on 5-minute intervals, which is essential for high-sensitivity PV Power analysis. However, the DC 

Parameters of the inverters have been accumulated only in the TETB building. 

4.3 Site Selection 

A carefully chosen site is required to ensure that the study captures a wide range of relevant shading 

scenarios due to temporal and permanent obstacles, which would produce accurate and reliable data. 

By considering Factors such as shading diversity, solar exposure accessibility, and environmental impact, 

the study could maximize the effectiveness and applicability of the outcomes. [state a study] 
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Complex urban rooftops were initially considered for study to better understand the effects of shadowing 

on PV panels. Some potential sites included the PV Systems on the rooftops of TETB, NIDA, QUAD, and 

PV GYM, as shown in Figures 18-21. However, before the start of the study, an analysis based on the 

availability of required data for each building was weighed, and a rooftop was chosen.  

 

 
Figure 18 TYREE Energy Technology Building, UNSW 

 
Figure 19 NIDA, Kensington 

 
Figure 20 Quadrangle Building, UNSW 

 

Figure 21 UNI Gym Buildings, UNSW 

 

The table below shows the weighing of choice based on data availability. The choices are weighed based 

on the availability of  

1. PV Schematics 

2. LIDAR Data 

3. Meteorological Data 

4. PV System Data ( DC Parameters) 

 

S.No Building 

PV 

System 

Rating 

LIDAR Data 
Meteorological 

Data 

PV System 

Data 
Score 

1. NIDA Buildings 155.21kWp 1 1 

0.5 

(contains only 

AC 

Parameters) 

2.5 
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2. TETB 141.92kWp 1 1 

1 

(contains 

both AC and 

DC 

Parameters) 

3 

3. Quadrangle Building 100kWp 1 1 0 2 

4. UNSW Fitness Center 9.9kWp 1 1 

0.5 

(contains only 

AC 

Parameters) 

2.5 

 

Table 2 Comparing available data from each site 

Based on the score for data availability, the TYREE Energy Technology Building (-33.9175, 151.2268) has 

been chosen, as it outpaces other buildings due to the system's availability of DC Parameters. The 

schematics of the 141.92kWp PV plant of TETB are attached in Appendix A. 

4.4 Working with LIDAR 

The workflow presented in Fig outlines a proposed systematic approach to utilizing LIDAR Data to 

analyze roof structures in buildings. Several studies on generating 3D buildings have worked on similar 

workflows to achieve desired outputs. This workflow of working with LIDAR is divided into phases, from 

data cleaning to analyzing the processed data. 

4.4.1 Preprocessing LIDAR Data  

This includes noise removal and reclassification of point clouds to the respective categories such as 

Building, Vegetation, and ground points, hence preparing the data to be processed for a given area of 

interest. (El-Ashmawy and Shaker, 2014). This step ensures that the data is clean and accurately 

represents the built environment and terrain. 

 

 

Figure 22 Noise from Point Cloud 
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4.4.2 Generating Building Footprint 

This step is crucial in generating 3D buildings, as it provides the building footprint from the terrain, 

establishing the spatial location of the building on which shading analysis would be performed. (Latif et 

al., 2012). The building footprint is extracted from the processed LIDAR data by filtering the Building 

Class Point Clouds and populating them as a raster. This process converts the populated raster to a 

polygon and eliminates polygons based on area and noise.  

 

Figure 23 Generating building footprint from LIDAR (Boz et al., 2015) 

 

4.4.3 Generating 3D Building Multipatch:  

3D Building provides a realistic representation of building rooflines, crucial for accurate shading analysis. 

The process would start by extracting the ground elevation from the LIDAR data, forming DSM and DTM 

rasters. The normalized DSM is calculated 

nDSM = DSM-DTM 

A 3D model is created by extruding the building footprint to the LIDAR height of the respective Building. 

A study from (Jayaraj and Ramiya, 2018) showed potential approaches for generating LOD1, LOD2, and 

LOD3-based 3D Buildings from LIDAR. The process would utilize DSM, DTM, and nDSM raster to estimate 

the Base height and Eave Height of the 3D Buildings; considering the use of a single software approach, 

the 3D Basemap solutions from ArcGIS Pro would be a potential tool to generate and extrude 3D Builds 

from the building footprint. The figure below shows the comparison of the LOD2 model generated from 

ArcGIS Pro and Opensource Software; it is observed that the Level of Detail generated from ArcGIS Pro 

would be essential for the accurate generation of 3D Buildings for better shadow estimation. 
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Figure 24 LOD2 3D Buildings generated from 3D Basemaps 
in ArcGIS (Jayaraj and Ramiya, 2018) 

 

Figure 25 LOD2 3D Buildings generated from Open Source 
Software (Jayaraj and Ramiya, 2018) 

 

4.4.4 Preparing and Performing Shading Impact Analysis on 3D Buildings 

Shading Impact Analysis involves simulating the sun's movement across the sky and observing its 

interaction with the 3D Building Models and the respective rooflines over time. This could be performed 

using a Development Impact Analysis, a proprietary tool from ArcGIS that allows detailed solar radiation 

and shadow analysis across different times of the year. The tool uses other sub-tools like Create Sunpath 

to calculate the solar azimuth and elevation of the sun across the sky for a given day and year (fig) and 

Generate shadow panels based on the sun's position and shading impact on the buildings (fig) 

Figure 26 Sunpath Generator Tool in ArcGIS 

 

Figure 27 Illustration of Shadow impact Analysis in 
ArcGIS 

 

4.4.5 Identify Shaded String 

The specific PV Strings potentially impacted by the shading are identified by overlaying the shading 

analysis results on the actual roof imagery to determine the roof and PV location. The PV Schematics 

data would help identify the shaded string and would help further funnel down the analysis to the specific 

PV String. This process would involve georeferencing a GEOSAT image onto the spatial coordinate (with 

Latitude and Longitude ), where High-definition satellite imagery of the building would be exported with 
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geospatial referencing (Herbei et al., 2010) . It would be used to form an overlay image on the actual 

rooftop mapped to the LIDAR coordinates.   

The further process of PV String Identification would involve the formation of PV Module Polygons 

through Imagery shading. Comparing the shadow analysis with the PV module layout and the PV 

schematics would indicate the shaded string to be modelled. 

 

 
Figure 28 Shadow Impact Analysis of 
NIDA on Jul,5 02:31PM 

 
Figure 29 Shadow Panels overlapped with 
PV Panel Polygons 

 
Figure 30 PV Schematics of NIDA 

 

4.4.6 Generating Shading Profile 

This process would concentrate on the shading profile of a specific string across the day on a 5m interval 

to ensure that minute changes in shading patterns were recorded in the shading profile. The process 

would involve using a 2D DSM raster and a Hill shade analysis on the specific string to quantify the 

degree of shading across the day. Using Hill Shade analysis to determine the shading profile increases 

the study's sensitivity to as low as 0.5m. This is visualized in Fig 31-32 

The raster would be put through several filtering processes to identify specific regions of complete 

shading. This would involve smoothing Filters to reclassify the raster from 0-255 to (1-5/8). Considering 

a 5-minute observation frequency, this process would be implemented on a ModelBuilder in a looped 

environment. (Appendix B.5) 

 

 
Figure 31 Shadow Panels overlapped 
on Hillshade Analysis Layer 

  
Figure 32 PV String Layout overlapped 
on Shadow Panel and Hillshade 
Analysis Layer 

 
Figure 33 Reclassified layer output from 
the model 

 

The output from the process would be a CSV file containing the Zonal statistics of the raster and 

histographical data of the share (Count) of pixel value on the PV String. From the above fig, a Hillshade 
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raster which has 0-255 is cut down and reclassified to 0-3 by forming Intervals based on the 2nd 

Standard Deviation Limits from the Upper and Lower value of the Clipped Hilshade Pixel from Figure 33. 

 

4.5  Modelling in Python: 

After identifying the shaded string, the selected PV string configuration would be modelled onto Python 

via PVLIB. The PV schematic data would be used to get information on the PV system's azimuth and tilt 

orientation. The schematics also provide details about the PV Panel and Inverter used in the system. The 

PV string configuration is required for accurate system modelling. 

4.5.1 Modelling Plane of Irradiance 

Initially, the PV String is modelled based on input from clear_sky values. The plane of the array is 

calculated for the clear_sky values and plotted to identify the maximum power generated from the string. 

After successful modelling, the weather data is obtained to calculate the string's POA and the respective 

DC Power is calculated based on POA_global. It is plotted to ensure the simulated max DC Output Power 

is within the range of the string's actual DC Power. 

To calculate the solar irradiance on the plane of the array, the Solar Zenith and Azimuth angles are 

calculated relative to the location, orientation, and day of observation on the panel. The solar Zenith and 

Azimuth 

θz=arccos(sin(ϕ)×sin(δ)+cos(ϕ)×cos(δ)×cos(h)) 

𝛾𝑠 = 𝑎𝑡𝑎𝑛2(
− sin(ℎ)

(cos (ℎ) × sin (𝜙) − tan (𝛿) × cos (𝜙)
) 

 

(Reda and Andreas, 2008) 

The Solar azimuth and zenith is calculated through pvlib pvlib.solarposition.get_solarposition(latitude, 

longitude), and it returns azimuth and zenith based on the time period of weather data 

 The angle of sun’s rays to the panel (θ) is calculated as 

θ=cos(sin(δ)×sin(ϕ)×cos(β)−sin(δ)×

cos(ϕ)×sin(β)×cos(γ)+cos(δ)×cos(ϕ)×cos(ω)×cos(β)+cos(δ)×sin(ϕ)×cos(ω)×sin(β)×cos(γ)+cos(δ)×sin(ω)×si

n(β)×sin(γ))
-1 

δ is the solar declination angle. 

ϕ is the latitude. 

β is the tilt angle of the panel. 

γ is the azimuth angle. 

ω is the hour angle. 
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The POA_unshaded [Global] is calculated from 

POA_unshaded[Direct] = DNI×cos(θ) 

POA_unshaded[Diffuse] = DHI×TF (Transposition Factor) 

By default, pvlib considers the Hay-Davies Transposition Factor, where the model assumes a uniform 

distribution of the diffuse sky radiation. 

Where TF = 𝐹ு௬ = ቀ1 −
ேூ

ீுூ
ቁ × ቀ

ଵାୡ୭ୱ(ஒ)

ଶ
ቁ +

ேூ

ீுூ
×

ୡ୭ୱ ()

ୡ୭ୱ ()
+ Ground Reflectance Term 

(Nassar et al., 2020) 

POA_unshaded[Ground]= GHI×ρ×((1−cos(β)/2) 

POA_unshaded[Global] = POA_unshaded[Direct]+POA_unshaded[Diffuse]+POA_unshaded[Ground]. 

(F. Holmgren et al., 2018) 

The POA in pvlib is calculated via pvlib.irradiance.get_total_irradiance() with passing GHI, DHI, and DNI 

from weather data, and the calculated Solar azimuth and zenith values as the function parameters to 

compute solar irradiance on the POA. The default HayDavies Model is used for POA calculation in pvlib. 

 

4.5.2 Modelling Shaded_POA: 

Form the exported .csv file from the previous process of estimating the string's shading profile. The 

shading percentage for the string is calculated over a 5m period. The area under shading is assessed by 

identifying the Lowest Pixel from the reclassified raster, which denotes the Zero Pixel from the Hillshade 

raster. (Zhao et al., 2021) 

 

Shading (%)on the PV String =
𝐶𝑜𝑢𝑛𝑡 (𝑃𝑖𝑥𝑒𝑙 𝑉𝑎𝑙𝑢𝑒 = 1 𝑓𝑟𝑜𝑚 𝑅𝑒𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑍𝑜𝑛𝑎𝑙 𝑇𝑎𝑏𝑙𝑒)

Total Count of Pixels on the string
 

 

The Plane of Irradiance of the shaded String is calculated in Python based on the actual meteorological 

weather data and is calculated by 

POA_shaded[Direct] = POA_unshaded[Direct]*Shading Factor* 

POA_shaded[Direct] = POA_unshaded[Direct]*(1-Shading(%)on the PV String) 

POA on Shaded Array = POA_shaded[Global] = POA_shaded[Direct] 

                      + POA_unshaded[Diffuse]                    
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   (Miranda et al., 2021)  

*Where SF =0 (no Sunlight on string) when 100% Shading on the string and vice versa 

 

4.5.3 Modelling DC Power Output 

The DC Power output from PV is calculated by considering the POA irradiance, the characteristics of 

the PV Module, and the environmental conditions, such as temperature and wind speed. 

The SAPM temperature model calculates cell temperature. It is best suited for systems where NOCT 

and wind speed data for the module are available and is modelled to get accurate PV output. Since the 

PV module on the chosen site location is Suntech Power Pluto 215Udm is a monofacial panel hence 

the TEMPERATURE_MODEL_PARAMETERS would be modelled for glass/polymer module 

Where  

 𝑇ௌ௨ = 𝐸 × exp(𝑎 + 𝑏 × 𝑊𝑆) + 𝑇 

(F. Holmgren et al., 2018) 

Where  

 Ta is the ambient temperature in degrees Celsius. 

 EPOA is the Plane of Array (POA) irradiance in W/m². 

 WS is the windspeed at 10m 

 

Temperature Model parameters are used to model the impact of temperature variation on DC output. 

The air temperature and wind speed of 10m is utilized to compute the cell's temperature, which would 

affect the panel's DC Power output. 

The PVwatts DC Power Models compute DC Power output from the string. Environmental Parameters 

such as POA[Global] and  Cell Temperature are passed along with Pdc, Power from the PV Module from 

STC, and the module's power coefficient.  

 

𝑃 = (
ீುೀಲಶಷಷ

𝟏𝟎𝟎𝟎
) × 𝑃(1 + γ𝑝𝑑𝑐(𝑇 − 𝑇)  

(F. Holmgren et al., 2018) 

 

Where  

𝐺ைாிி = POA_ Effective Global Irradiance 

PDC0 = DC Nameplate  

γ𝑝𝑑𝑐 = 𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑓𝑜𝑟 𝑃𝑜𝑤𝑒𝑟 
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Tref = Cell reference Temperature = 25° 

 

Other models, such as SAPM, were not used in the computation of DC Power because there was a lack 

of data on the module's SAPM coefficients. The graphs are plotted and then analyzed to identify the 

patterns in the findings. 

 

4.6 Tools Used in the Workflow 

This section will compare the available tools for the requirements of our study; a comparison is made for 

two primary components of the study: 1. Geographic Information Software and 2. Modelling in Python 

4.6.1 Geographic Information Software (GIS):  

Considering using LIDAR for the study, the two potential Geographic Information Software proposals 

were ArcGIS Pro from ESRI and QGIS from Gary Sherman. However, ArcGIS Pro was chosen for the study 

to compare the possible tools for processing LIDAR and the ease of implementing the computation of 

LIDAR. The table below shows the comparison study between ArcGIS Pro and QGIS for the tasks to be 

completed for the study. 

 

S.no Task ArcGIS QGIS Comparison 

1. 
Preprocessing LIDAR 

Data 

Tools: Integrated 

LIDAR Processing 

tools with 

classification and 

noise removal 

Tools: Plugins like 

LAS Tools are 

required for LIDAR 

data processing, 

which are less 

integrated. 

ArcGIS offers a more 

friendly, seamless, user-

friendly LIDAR 

processing experience, 

while QGIS requires 

additional setup and 

plugins. 

Ease of Use: Intuitive 

interface with 

comprehensive tools 

for filtering and 

classifying data. 

Ease of Use: Effective 

but requires 

familiarity with 

plugins, which can be 

complex to set up. 

ArcGIS provides a more 

integrated environment, 

reducing the learning 

curve compared to 

QGIS. 

2. 
Generating Building 

Footprint 

Tools: Easily extract 

building footprints 

using the built-in 

LIDAR processing and 

geoprocessing tools. 

Tools: Footprint 

extraction is possible 

through plugins but 

could be more 

streamlined. 

ArcGIS offers more 

direct and integrated 

tools for footprint 

generation, making the 

process faster and more 

efficient. 

Ease of Use: Direct 

access to tools within 

the same platform, 

simplifying workflow. 

Ease of Use: Requires 

additional plugins 

and more manual 

steps, increasing 

complexity. 

ArcGIS's built-in tools 

simplify the process, 

while QGIS users need 

to manage multiple 

plugins. 
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3. 
Generating 3D 

Building Multipatch 

Tools: The 3D 

Basemap solution in 

ArcGIS provides 

robust tools for 

generating 3D 

multipatch 

models.ArcGIS can 

also support City 

Engine 3D Rule 

packages to generate 

LOD2 Buildings. 

Tools: Basic 3D 

visualization through 

QGIS 3D plugin, with 

limited multipatch 

support. 

ArcGIS’s 3D Basemap 

solution is far superior 

for generating detailed 

3D building models 

compared to QGIS. 

Ease of Use: 

Integrated workflow 

for creating and 

editing multipatch 

models. 

Ease of Use: Requires 

advanced skills and 

additional plugins for 

similar tasks. 

ArcGIS provides a more 

user-friendly and 

comprehensive 3D 

modelling environment. 

4. 

Preparing and 

Performing Shading 

Impact Analysis 

Tools: Development 

Impact Analysis 

solution in ArcGIS, 

designed explicitly for 

shadow and shading 

analysis. 

Tools: Basic shading 

analysis can be 

performed but 

requires plugins like 

QGIS2ThreeJS or 

additional scripting 

ArcGIS offers a 

specialized solution for 

shading analysis, 

whereas QGIS’s 

capabilities are limited 

and require more effort. 

Ease of Use: User-

friendly, integrated 

tools with detailed 

reporting and analysis 

capabilities. 

Ease of Use: It is a 

more manual process, 

less intuitive, and 

requires more 

profound knowledge 

of plugins. 

ArcGIS’s dedicated tools 

for shading analysis 

provide a much easier 

and more effective 

solution than what is 

available in QGIS. 

Table 3 Comparison of GIS Software 

 

4.6.2 Modelling PV System 

When selecting an Integrated Development Environment (IDE) for modelling in PV system analysis, 

particularly for tasks such as handling high-resolution meteorological data and conducting shading 

performance analysis, it's essential to consider the specific features, usability, and tools each IDE offers. 

The table below discusses the comparison of various IDE. 

 

S.No Criteria Spyder PyCharm Jupyter 

 Data Handling & 

Visualization 

Integrated Variable 

Explorer for real-time data 

inspection is ideal for 

handling and visualizing 

large datasets like 5-

minute meteorological 

data. 

Strong data handling 

capabilities but lacks 

built-in real-time data 

inspection features, 

requiring plugins or 

additional setup. 

Excellent for interactive 

data exploration and 

visualization but less 

suited for complex, 

multi-file projects. 
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 Integration with 

Libraries 

Seamless integration with 

PVlib, SciPy, and Matplotlib 

makes it straightforward to 

set up and use for PV 

system modelling. 

It supports integration 

with scientific libraries 

but may require 

additional 

configuration and lacks 

the native support that 

Spyder offers. 

It is well-suited for 

using scientific libraries 

interactively but needs 

more than the full IDE 

capabilities needed for 

large-scale modelling. 

 Debugging & Error 

Handling 

Robust debugging tools 

with an intuitive interface, 

including real-time error 

highlighting and step-

through debugging. 

Advanced debugging 

features with extensive 

support for complex 

projects, but the 

interface may be 

overwhelming for 

scientific tasks. 

Limited debugging 

capabilities, focused 

more on code 

execution and 

visualization than 

comprehensive 

debugging. 

 Learning Curve There is a low learning 

curve for those familiar 

with scientific computing, 

especially users 

transitioning from 

MATLAB. 

A steeper learning 

curve exists, especially 

for users without a 

software development 

background. 

Minimal learning curve 

for interactive coding 

and visualization but 

not designed for 

complex project 

development. 

Table 4 Comparision of Python IDE 

Various specialized tools are employed in the workflow to ensure accuracy, efficiency, and 

comprehensive analysis. Each tool is crucial in different workflow stages, from data acquisition and 

preprocessing to final shading estimations and visualization. The table below shows the tools under 

various software utilized from the preprocessing stage until Validation and Calibration. 

S.No Software Tools/Library GeoProcessing Tools / Functions 

1. ArcGIS 

Conversion Tools 
LAS Dataset to Raster 

Raster to Polygon 

3D Analyst Tools 

Slope | Aspect |  

LAS Building Multipatch 

Classify LAS Noise 

Extract LAS 

Regularize Building Footpath 

Spatial Analytics 
Majority Filter 

Hillshade Analysis 

Solar Radiation Raster 

Image Analyst Tools 

Focal Statistics 

Georeferencing 

 

Data Management Tools 

Create LAS Dataset 

Zonal Statistics as Table 

LAS Dataset as Statistics 

Eliminate Polygon Part 

3D Basemaps 

Extract Elevation from the LAS Dataset 

Roof Segmentation Tool 

Create 3D Buildings 
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Fuse Buildings 

Developmental Impact 

Analysis 

Sunpath Tool 

Shadow Analysis 

Visualize Shadows 

2. 
Spyder IDE 

(Python Environment) 

Pvlib 

 

Location() 

Get_solarposition() 

irradiance.get_total_irradiance 

temperature.sapm_cell  

pvsystem.retrieve_sam 

pvwatts_dc 

Pandas 

read_csv 

reindex 

.loc[] 
 

matplot Plot() 

3. Tableau Visualizer  

Table 5 Tools and functions used in the study 
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4.7 Workflow     

This section explains the workflow of shading estimation, from preprocessing to estimations. Figure 34 

below shows the sequential processes of generating 3D Buildings to perform shadow analysis. 

 

 

 

 

Figure 34 Detailed Workflow of the study 
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5. Results and Analysis 

The section discusses the results and progress of preprocessing LIDAR to generate 3D Buildings and 

performing the Shadow Impact Analysis on the chosen location, TYREE Energy Technology Building 

(TETB) at (-33.9175, 151.2268). 

 

5.1 Preprocessing  LIDAR Data: 

5.1.1 Select Area of Interest 

The LIDAR data from ELVIS was available in batches of 4.5 km2.  As the area of interest had been chosen 

from the previous section, the LiDAR data available in the form of LAS extension about the given area of 

interest is Extracted through the Extract LAS Tool since the site selection for the study is Tyree Energy 

Technology Building (TETB), the location of interest also considers nearby building in the proximity to 

understand the effect of shading right from sunrise to sunset. 

The initial step mandates ensuring all elements of the map/Scene follow spatial reference XY: GDA2020 

MGA Zone 56 and Z: AHD. The standard unit of measurement in this study is meters.  

Figure 35 Area of Interest for the study Figure 36 LIDAR clipped to Area of Interest 

 

5.1.2 Classification of Point Clouds: 

The classification of point clouds allows for the identification and separation of various surface types, 

such as ground, vegetation, buildings, and other structures. Ensuring proper segmentation is mandatory 

when defining the edges and dimensions of any subject on the LIDAR Map, as it is essential for analyzing 

specific features that impact shading. This would improve the Terrain and Surface raster generated post-

cleaning. 

Figure 37 shows classified LIDAR data with few errors in classification, which could lead to 

misinterpretation of the point cloud and wrong estimation and dimension. 
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Figure 37 Point Clouds with Noise and Irregularities 

 
Figure 38 Preprocessed LAS Dataset with point cloud 
reclassification. 

Of the roof. Hence, point clouds are manually classified to recategorize High vegetation point clouds 

with the building point clouds and vice versa, as seen in Figure 38. 

 

5.1.3 Filter Noise:  

Certain point clouds would be accounted for as Noise and High Noise based on the offset of their xy and 

z axes. Noise in LIDAR data would lead to incorrect classification, specifically in areas with low point 

density. Hence, the noise point clouds were identified and removed using the Classify Noise Tool by 

limiting the height extent of required point cloud data for further processing. 

The filtered, reclassified, and preprocessed data is then converted to a LAS Dataset, efficiently stored in 

3D (x,y,z) coordinates. Around 67199 points were removed within the Area of Interest from the source 

point cloud data, as noise and high noise, ranging from -19m to 97m in height. The creation and storage 

of the LAS Dataset are essential for further data processing related to the analysis. 

 

Figure 39 Noise Point Clouds within the Area of Interest 

 

 

5.2 Generating Building Footprint:    

The process involves 2D visualization of classified LAS Dataset, and elevation is extracted from the point 

clouds. The Digital Surface Map (DSM) raster is generated with building and ground point clouds, as 

shown in Figure 40, and the ground point cloud is used to create a Digital Elevation Map (DEM) raster 

Figure 41. A normalized DSM raster is generated by subtracting DSM and DEM to obtain normalized 

building height, as shown in Figure 42. Extract Elevation. To simplify the process, the Extract ground 
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elevation LAS Dataset Geoprocessing tool from the 3D Building Tool of ArcGIS is used to compute DSM, 

DTM, and nDSM of the raster of specified cell size. 

An optimal cell size of 0.3 is used to maintain the raster's essential detail and smoothness for further 

processing. The generated rasters would be used to determine the height characteristics of components 

such as Facades, towers, and HVAC systems on the roof.  

 
Figure 40 DSM Raster 

 
Figure 41 DTM Raster 

 
Figure 42 nDSM Raster 

 

The LAS Dataset is filtered and processed through LAS Point Statistics as a Raster geo-processor from 

Data Tool Management to form a raster only with the point of buildings, as shown in Figure 43.  

The raster formed in the process contains the filtered point clouds of buildings from the LAS dataset. 

This was then converted to a polygon through the Raster to Polygon Tool (Conversion Tools), as shown 

in Figure 44. This process converts the cell with the same value from a raster to a simple polygon with 

unique OBJECT_ID and Shape length and area attributes. The Eliminate Polygon tool removes minors 

and filters out the undesirable polygons on the raster. The regularized Building Footpath Tool fills the 

gaps between the gaps formed in the Raster to Polygon Tool. 

Parameters such as Tolerance, Density, Precision, and Diagonal Penalty were set to 1,1,0.25 and 1.5 based 

on suitable optimization. 

 

Figure 43 LAS Point as Statistics Tool Figure 44 Raster to Polygon Process Figure 45 Regularized Building Footprint 
of TETB 

 

Similarly, the footprint is obtained for other buildings near the TETB Building. The footprints of the UNSW 

Law Building, the June Griffith Building, NIDA, and the New College Postgraduate Village Building have 

been regularized for further processing to generate a 3D Building Multipatch. The footprint of the TETB 

Building and other neighboring buildings are shown in Figure 45. 
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Figure 46 Regularized Building Footprint of Neighbouring 
Buildings around TETB 

 
Figure 47 Segmented Rooflines of TETB 

 

 

 

5.3 Generating  3D Building Multipatch : 

5.3.1 Roof Segmentation 

The first step in generating 3D base maps is manual/automated segmentation of roof parts. On initial 

analysis of the TETB roof's roof type, it was identified that the edges of the roof seem to have curved or 

angled overhangs to which the PV Power system is mounted. This leads to complicated generation of 

roof segmentation through an automated tool-based approach. 

A manual rooftop segmentation approach is taken, especially for TETB, to segment the roof into various 

sections. This process employs feature class modification through split and edit Vertices Tools. The 

transparency of the polygons is reduced so that they can be seen through the DSM raster of the roof 

sections of the building for effective segmentation. The segmented Roof parts of TETB are shown in Fig. 

This segmentation separates roofs of various heights and uniquely distinguishes small tower structures 

on the building on a 2D raster. 

 

5.3.2 Extrude Building in Z-Axis to Create 3D Shapes: 

This process utilizes a 3D Basemap tool ( Create 3D Buildings) where the input for the geoprocessing 

involves the feature class of segmented roofs and elevation rasters that include DSM, DTM, and nDSM. 

The toolset is part of the ArcGIS Pro. It leverages the capabilities to generate 3D environments, where it 

calculates the base elevation and the Eave Height of a roof from the Raster data. The tool classifies the 

roof type into four types (Flat, Gable, Shed, and Hip ). This classification is primarily done by estimating 

the height and eave height of the roof; the segmentation data is utilized to identify individual objects in 

a building and extrude them as 3D objects based on elevation data. A confidence measurement is 
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performed against the 3D Building Roof Forms and the DSM raster of the building to ensure accurate 

segmentation.  

The symbology is changed to obtain 3D Buildings (polygons). The polygons are fused to form buildings 

based on the Building_ID attribute, and the Level of Detail 2 (LOD2) rule package from CityEngine is used 

to generate extrapolation of 3D structures. 

Figure 48 below shows the 3D building formation of TETB (primary location). The neighboring buildings, 

including NIDA, UNSW Law Building, June Griffith Building, and New College Postgraduate Buildings, are 

shown in Figure 50. 

 
Figure 48 3D Multipatch of TETB 

 
Figure 49 Google Earth 3D Model of TETB 

 

 

 

Figure 50 3D Multipatch of Neighbour Buildings around TETB 

 

5.4 Shading Impact Analysis  

To perform a shadow impact analysis over a 30-minute period, a Model Builder System is implemented 

in ArcGIS using Shadow Impact Analysis Geoprocessor Tools from the Development Impact Analysis 

Solution of ArcGIS. The suns shown in Fig and Fig represent the positions of the Sun Generated with 
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respect to the TETB Building. Fig compares the position of suns in December (Yellow Suns) and June 

(orange Suns) 

 
Figure 51 Sun positions on 21/12/2021 

 
Figure 52 Sun positions on 25/06/2021 

 
Figure 53 Comparison of Sun position 
for July and December 

 

The individual positions of the Sun are fed as input to the Shadow Analysis Geoprocessor, and the 

shadow panels on TETB are computed for the date of 21st December 2021. Figure 54 below shows the 

shadow panels during the start and end hours of the day to understand the shaded regions on the 

roof. 

 

Figure 54 Shadow Impact Analysis on TETB 3D Building on the first and last hours of 21/12/2021 

5.5 Identify Areas of PV System on the Roof under Shadow 

The previous process would lead to the identification of the shaded string of the PV Solar Plant on a 3D 

Building. However, due to the high tilt angles of the PV system on certain Roofs of the TETB building, 

overlapping the PV panels on the 2D map of the shadow panels was challenging. Observations from the 

previous process, correlating with the position of the PV System on the PV Schematics, show that string 

7C is undergoing shading in December and June. Upon performing the Hill shade analysis of the DSM 

raster obtained previously, Figure 55 showed shadows that overlapped the 3D shadow panels.  

Georeferencing the High-Res Satellite Image is performed with 6 points reference with the DSM raster 

from LIDAR, and the polygon panels are formed as shown in Figure 56. The superimposed images of the 
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panel with the Shadow Panels obtained from the shadow analysis and comparing them with the PV 

Schematics of TETB revealed that PV String 7C (as seen in Figure 57) is a potential system to be studied 

as the system underwent significant shading as observed on Dec 21st, 2021, at 03:45 PM shadow analysis 

and hillside analysis. The PV Schematics of TETB are attached in the Appendix A. 

 
Figure 55 Shadow Panels of TETB 

superimposed on Hillshade Analysis 

 
Figure 56 TETB Imagery Georeferenced 

and PV Polygons on Roof 

 
Figure 57 PV String 7C Shaded. 

 

5.6 Estimation of Shading Profile on the String 

The shading profile also had to be estimated to analyze 5 minutes of DC Power from the PV String. The 

solar azimuth and elevation are generated as a CSV for a given day using the pvlib Library in Python 

(Appendix B.4 ), as shown in Figure 58. They are provided as input for Hillshade analysis, where the 

hillshade analysis enables the shadow modelling feature on the raster. A ModelBuilder in ArcGIS Pro is 

utilized to form a workflow using Hillshade Analysis Generation from the DSM created in Section 5.2. The 

Model Builder was built on the process involving, as shown in Appendix B.2 ,  

Hillshade Analysis > Clipped on the New Area 

of Interest (PV String 7C) > Majority Filter > 

Raster Reclassification > Majority Filter > 

Zonal Statistics as a Table> CSV Export 

This process ensures that the integer value 

from Hillshade Analysis, which usually ranges 

from 0 to 255 in pixel value, is reclassified to 

a lower 1-5 / 1-8 based on the range of the 

Min and Max limit on a clipped raster at a 

given time frame. Figure 59 below shows the 

raster's sequential change from Hillshade 

Analysis to the final Reclassified Raster for the final hours on 21st December 2021. 

The final reclassified Raster is put through a majority filter to make sure the shaded pixels (1) are 

populated by checking on four other neighbour pixels; this is to ensure that only the sharp contour of 

the projected shading is captured on the raster. The final raster is converted to a table using Zonal 

Statistics as a Table Tool. The final table is converted to CSV, each file containing the pixel value and 

their respective count for 5 minutes across the day. 

Figure 58 Azimuth and Elevation for 21/12/2021 
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Figure 59 PV String Shade Analysis with ModelBuilder in ArcGIS 

From 15:00hrs to 17:00hrs, a gradual shadowing effect was observed on PV String 7C, and a reclassified 

raster was formed to estimate the shading profile of the Inverter tower on the string. 

5.7 Modelling in Python 

The previous process generated around 171.csv files of 5-minute zonal data. A Python code (Appendix 

B.4) was written to consolidate the shading profile of the PV String by timestamp. As discussed in the 

previous section, 4.6.2, the string's shading factor is determined for the given day, and the plot of the 

shading percentage for 21st December 2021 is shown in Figure 60. 

 

Figure 60 Shading Percentage vs Shading Factor on 
21/12/2021 

 
Figure 61 GHI vs. Calculated Plane of Array on 21/12/2021 

 

The PV Schematics in Appendix A are used to model the PV System in Python (Appendix B.3). Considering 

the independent performance of the Sunny Boy Tripower Inverters, Python code is used to model MPPT 
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B of the system configuration, to which string 7C is connected. The solar azimuth and zenith are 

calculated through pvlib, passing the location's latitude and longitudinal parameters. 

Meteorological data such as GHI, DNI, and DHI, along with the orientation of the modules from PV 

Schematics, are used to compute the plane of array irradiance. The default Hays-Davies Model is used 

to model the Diffused component of the POA. Figure 61 shows the plot of GHI vs. POA  for 21 December 

2021.  

For the computation of DC Power, the cell temperature for the day is computed through the SAPM 

Model, as discussed in the previous section 4.6.2, where the shaded_POA[global] is passed as the 

irradiance, and the cell temperature is computed from the SAPM model considering the model type from 

the PV Schematics; the Panel Model Suntech Power Pluto 215W UDM is a monofacial module and is 

modelled as glass/polymer is used as inputs for the function pvlib.pvsystem.pvwatts_dc. The figure below 

shows the Shaded vs Unshaded plot of the Plane of Array Irradiance and the respective DC Output. 

 

 

Figure 62 a) POA Shaded vs POA Unshaded. b) Shaded DC Power vs Unshaded DC Power from the string 

 

As seen from the plotted graph, on comparing the POA_shaded vs. Unshaded POA, the impact of 

shading is observed to be impacted at 16:00hrs, and the shaded DC Power output follows a similar trend 

to that of the shaded POA incident on the PV String. The plot of the DC-shaded output shows the impact 

of shading on the string.   
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5.8 Result Analysis and Discussion 

The DC output for the shaded and unshaded POA is plotted in Figure, and the string's DC Power Output, 

combined with other weather parameters like Air Temperature, windspeed_10 m, GHI, DNI, and GHI, is 

exported to be further visualized on  Tableau with the actual inverter Data. 

Tableau is used to visualize and compare the actual inverter parameters with the simulated parameters. 

The plot below shows the simulated DC Power Output vs. the Actual DC Power Output. The Inverter 7 

Data, Simulated PV    Data, and shading profile data are connected in Tableau through a Date Timestamp, 

and the output is visualized. 

The Plot in the figure 

63. shows the 

simulated vs. Actual 

DC Power vs. the 

shading percentage 

of the PV String. As 

observed from the 

graph, from 07:00 

AM, as the shading 

percentage on the 

string decreases, the 

Output power from 

the Actual and the 

Simulated PV String 

also increases. At 

04:15 PM, a sharp increase in shading is seen due to the shading caused by the tower on the roof of 

TETB, resulting in a rise of 25% to 65%, leading to a sudden drop in PV string power (DC) from 449.9W to 

205.4W to the inverter. A slight deviation in the Simulated vs. actual power profile has been observed, as 

there would be a subtle change in the degradation factor mismatch and assumptions, considering the 

adaptation of the model used in modelling temperature and irradiance on the POA. The module lacks 

the Sandia parameters, making it impossible to work on other models for POA irradiance calculations 

and testing with other DC Power modelling functions.  

 

Figure 63 Simulated vs Actual PV Panel DC Output from String 7C with Shading Percentage 
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On analyzing the 

graph in Figure 64. 

the voltage and 

current output 

from the string, at 

07:55:00AM, the 

sudden ramp-up 

of DC current and 

voltage is observed 

due to the sun's 

position hitting the 

horizon to the PV 

String’s location. 

However, by 04:10 

PM, as the shading 

percentage of the 

string ramps up, the current output from the string ramps down due to shading from the tower’s roofline. 

As the DNI component is cut due to shadowing, The current from the PV String persists in being 

generated due to the Diffuse component of the Plane of Array Irradiance. Also, it was observed that from 

2:00 PM, as the shading percentage increases gradually from 0% to 20%, a ripple on the decreasing trend 

of the current and increasing trend of voltage is observed as the effect of bypass diodes shutting down 

parts of the PV module in the string. 

The graph in Figure 65 

compares the Simulated 

Module Temperature 

against the DC voltage from 

the PV String from 07:00 AM. 

As the module's temperature 

increases with reduced 

windspeed, the effect is seen 

on the PV voltage. As the sun 

rises above the horizon, a 

sudden voltage drops. It's 

evident that the voltage 

decreases as the module 

temperature increases; at 

04:15 PM, as the string 

reaches 100% shading, the 

drop in Shaded Plane of 

Figure 64  DC Current and Voltage from String 7C to Inverter vs Modelled Shading Percentage 

Figure 65 DC Voltage from String 7C vs Meteorological Data 
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Array Irradiance leads to a reduction in module temperature; it predominantly observed that the 

windspeed_10m gradually increases towards the evening, leading to faster cooling of the module, and a 

sharp increase in voltage. 

The result and analysis of the above graphs show a connection and correlating patterns between the 

electrical and meteorological parameters of the Simulated model and the electrical parameters from the 

actual Inverter. 

6. Discussion 

This section provides an independent discussion of the study's outcomes. As the study aims to analyze 

the underperformance of PV due to shading on the DC Side through LIDAR, the primary component of 

this study involves modelling the LIDAR components to model the shading impacts on the PV String 

effectively. However, when 

comparing the simulated power 

(DC) and the actual inverter MPPT 

Power (DC) from the PV String, a 

minute deviation is observed in the 

plotted data. The graph in the 

figure 66-67 indicates that the 

simulation provides a closer value 

to the actual DC Power. It is 

observed that the error between 

the simulated and actual DC Power 

data is less when the power levels 

are less than 500W and 2700 W. 

The errors have been quantified 

through RMSE, MAE, MAPE, and nRMSE of 350.80W, 272.93W, 47.85%, and 0.13, respectively, as seen in 

the figure.68 

 
Figure 67 Simulated Shaded DC Power vs Actual DC Power 
from Inverter 

 
Figure 68 RMSE, MAE, MAPE, and nRMSE Metrics for shaded 
simulated vs actual DC Power Output 

 

Figure 66 Inverter MPPT DC Power Input vs Simulated DC Output vs Shading 
Percentage 
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In due course of the study, the shadowing impacts are calculated from a String level; however, in real-

time, the module-level study would further improve and reduce the error between the simulated and 

actual values in DC. This is because as shading occurs on a module level, the bypass diodes would turn 

up to shut down the portion of shaded cells in the module, causing sudden ripples of Voltage spikes 

when the shading on the string increases gradually post-02:00 PM, as seen in the figure. As a result of 

string level analysis at 04:15 PM, when the shading percentage reaches 65%, the actual inverter power is 

comparatively lower than predicted. The Sharp ramp rates of the shading factor / shading percentage 

are an effect of shading on the PV Panels caused by rooflines and facades. 

The model used in determining the shadowing impacts on a given area would change based on the 

observed tilt angle. As seen in the figure, running the model on a flat roof area at the NIDA building 

provides well-defined shading boundaries; however, since the analyzed PV string is at an orientation of 

45°, the estimation of the Shading factor would defer due to the angle of the roofline in close relation 

with the tower, as seen in Fig.  

Further observing the study's outcomes, the Shadow Impact Analysis (a proprietary solution tool from 

ArcGIS) on 3D buildings provides a rough outlook on the areas of the roof to which shadow occurs from 

a 3D perspective. The proposed model to generate the shading profile of the PV String using the 

Hillshade Tool provides closer estimations of the shading factor, leading to realistic simulation data. 

From the design perspective, the shadow impact analysis tool could be used to analyze the impact of 

shading caused by the facades of other buildings and the buildings to be observed; however, the 

hillshade analysis can estimate shading caused by the facades of buildings as well as the vegetation 

around the observed area, therefore providing closer estimations of shading due to temporal and 

permanent objects. 

From the above discussion of the results, a correlation between the simulated system and the actual PV 

system has been established, and the effects of shading have been translated into the change in the 

output, voltage, and current of the PV String; it is evident that the estimation of the shadowing effects 

on a PV System is feasible through modelling LIDAR. 
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7. Conclusion and Future Directions 

The main results of the study are concluded, and a few directions for future work are also provided. 

 

7.1 Research Results 

In Sections 1 and 2, the thesis introduces its organization, background, and fundamental research 

objectives and contributions. Section 3 identifies critical issues related to the performance drop in PV 

systems. It discusses the literature on quantifying performance losses, particularly due to shading, and 

provides a range of approaches, then narrows down the approach to using LIDAR to estimate shading. 

In section 4, an approach is derived to estimate the impacts of shadow on the PV system. The proposed 

workflow starts by recognizing the required data types and sources to model the shadow of a simulated 

system. Some of the critical findings post-modelling were: 

 A dual approach has been taken to model the shadows and identify the shaded PV String. 

 Performing shadow impact analysis using the Development Impact Analysis Tool from ArcGIS 

helps estimate the shading on 3D structures and identify the shaded portion of the roof area. 

This information is helpful in determining the PV string that needs further study and demonstrates 

the reliability of the tool for future studies. 

 The Proposed model utilizes Hillshade Analysis to generate a timestamped profile of the shaded 

region of the PV string across the day. It provides a measurement of the shading factor, leading 

to a closer estimation of the simulated PV Power in comparison to the actual DC PV Power from 

the string. 

 The proposed approach in the study could be applied to a broader spectrum of urban rooflines 

with LIDAR data to establish the shading effects on the PV systems from a design, operational, 

and maintenance level. 

 

7.2 Future Directions 

Although the study addressed the challenges of shading and quantifying its impacts, some potential 

directions for future work remain. 

 Deeper Analysis of the Shading Impact: The effect of shadowing on the PV String is computed 

on the string level; however, considering a cell-level/module-level analysis that includes the 

impact of bypass diodes would increase the accuracy of simulated data. 

 Reliability of the Model: The model could be further implemented on various types of sites that 

include PV modules of multiple orientations installed on various other kinds of rooflines; other 
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sources of LIDAR data (airborne, drone, and satellite) would further assess the accuracy of the 

estimations. 

 Further studies using time series LIDAR data as a source to assess the performance of the PV 

System and identify potential methodology to incorporate LIDAR into the operational and 

maintenance of the PV Plant. 
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Appendix A 

Datasheets and PV Schematics 

1. PV Schematics Page 1 
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2. Single Line Diagram of TETB  

 



The underperformance of PV Systems on the DC Side  

Understanding shading Effects in PV Systems using LIDAR 

 

 

 

55 
 

3. String Configuration of TETB PV System 
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4. Suntech Power PLUTO 215-Udm Datasheet 

5. SMA Tripower 12000TL 
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6. PV Data Request for TETB PV System from DARTH 

 

7. Meteorological Data Request from Solcast 
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Appendix B 

1. Calculate POA vs GHI 

# -*- coding: utf-8 -*- 

""" 
Created on Wed Jun  12 06:29:48 2024 
 
@author: rahul 
""" 
 
import pandas as pd 
import matplotlib.pyplot as plt 
import pvlib 
from pvlib.location import Location 
import matplotlib.dates as mdates  # Import mdates for date 
formatting 
 
weather_data = pd.read_csv('E:/Filter/2021-12-
21_weather_data_filter.csv') 
 
weather_data['period_end'] = 
pd.to_datetime(weather_data['period_end']) 
weather_data.set_index('period_end', inplace=True) 
 
# location and system parameters 
location = Location(latitude=-33.8688, longitude=151.2093, 
tz='Australia/Sydney') 
tilt = 45 
azimuth = 12 
surface_tilt = tilt 
surface_azimuth = azimuth 
 
# Calculate solar position 
solar_position = location.get_solarposition(weather_data.index) 
 
# Calculate extra terrestrial radiation 
extra_radiation = 
pvlib.irradiance.get_extra_radiation(weather_data.index) 
 
# Calculate AOI (angle of incidence) 
aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth, 
                           solar_position['apparent_zenith'], 
solar_position['azimuth']) 
 
# Calc POA sky diffuse 
poa_sky_diffuse = pvlib.irradiance.haydavies(surface_tilt, 
surface_azimuth, 
                                             weather_data['ghi'], 
weather_data['dhi'], weather_data['dni'], 
                                             
solar_position['apparent_zenith'], solar_position['azimuth']) 
 
# Calc POA ground diffuse 
poa_ground_diffuse = 
pvlib.irradiance.get_ground_diffuse(surface_tilt, 
weather_data['ghi']) 
 
# Calc POA total 
poa_total = pvlib.irradiance.poa_components(aoi, 
weather_data['dni'], poa_sky_diffuse, poa_ground_diffuse) 
 
# Add POA to the weather data 
weather_data['poa'] = poa_total['poa_global'] 
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plt.rcParams.update({'font.size': 14}) 
 
# Plot GHI vs POA 
plt.figure(figsize=(10, 6)) 
plt.plot(weather_data.index, weather_data['ghi'], label='GHI') 
plt.plot(weather_data.index, weather_data['poa'], label='POA') 
 
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) 
 
plt.xlabel('Time') 
plt.ylabel('Irradiance (W/m^2)') 
plt.title('GHI vs POA') 
plt.legend() 
plt.grid(True) 
plt.tight_layout() 
plt.show() 

 

2. Solar Azimuth and Elevation Calculator 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Jun  3 16:26:56 2024 
 
@author: rahul 
""" 
 
 
import pvlib 
from datetime import datetime, timedelta 
import pytz 
import pandas as pd 
import matplotlib.pyplot as plt 
 
 
 
def calc_solar_positions(latitude, longitude, timezone, date): 
    # start and end times 
    start_time = datetime(date.year, date.month, date.day, 5, 0, 0) 
    end_time = datetime(date.year, date.month, date.day, 20, 0, 0) 
 
    # Localize times to the specified timezone 
    localized_start_time = pytz.timezone(timezone).localize(start_time) 
    localized_end_time = pytz.timezone(timezone).localize(end_time) 
 
    # Generate a list of times at 30-minute intervals 
    times = pd.date_range(localized_start_time, localized_end_time, 
freq='15min') 
 
    # Calc solar positions for all times 
    solar_positions = pvlib.solarposition.get_solarposition(times, latitude, 
longitude) 
 
    return times, solar_positions 
 
# location (latitude, longitude, timezone) 
latitude = -33.91769 
longitude = 151.2270 
timezone = 'Australia/Sydney' 
 
 
# date 
date = datetime(2021, 12, 21) 
 
# Calc solar positions 
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times, solar_positions = calc_solar_positions(latitude, longitude, timezone, 
date) 
 
# DataFrame with datetime, time, azimuth, and elevation 
data = { 
    'Datetime': times, 
    'Time': times.strftime('%d/%m/%Y %I:%M:%S %p'), 
    'Filer': times.strftime('%H_%M_%S'), 
    'Azimuth': solar_positions['azimuth'].values, 
    'Elevation': solar_positions['elevation'].values 
} 
 
 
solar_positions_df = pd.DataFrame(data) 
 
# Filter the DataFrame to keep only rows where the elevation is greater than 0 
solar_positions_df = solar_positions_df[solar_positions_df['Elevation'] > 0] 
 
# Generate the dynamic CSV file path 
csv_file_path = 
rf'H:\TETB\model\solarpos\{date.strftime("%Y_%m_%d")}_15m_solar1_positions.csv' 
solar_positions_df.to_csv(csv_file_path, index=False) 
 
print(f"Solar positions have been saved to '{csv_file_path}'.") 
 
# Plot Azimuth and Elevation as smooth curves 
fig, ax1 = plt.subplots(figsize=(10, 6)) 
# Add title 
plt.title(f"Azimuth and Elevation on {date.strftime('%d/%m/%Y')}") 
 
# Plot Azimuth on the primary axis using datetime for x-axis 
ax1.plot(solar_positions_df['Datetime'], solar_positions_df['Azimuth'], 
color='tab:blue', label='Azimuth', linestyle='-', linewidth=2) 
ax1.set_xlabel('Time mm-dd (hh)') 
ax1.set_ylabel('Azimuth (degrees)', color='tab:blue') 
ax1.tick_params(axis='y', labelcolor='tab:blue') 
 
# Enable gridlines for primary axis 
ax1.grid(True) 
 
# secondary axis for Elevation 
ax2 = ax1.twinx() 
ax2.plot(solar_positions_df['Datetime'], solar_positions_df['Elevation'], 
color='tab:red', label='Elevation', linestyle='-', linewidth=2) 
ax2.set_ylabel('Elevation (degrees)', color='tab:red') 
ax2.tick_params(axis='y', labelcolor='tab:red') 
 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H')) 
ax1.xaxis.set_major_locator(mdates.HourLocator(interval=1))  # Set major ticks 
at every hour 
 
 
 
# Rotate x-ticks for better readability 
plt.xticks(rotation=0) 
 
# Adjust layout to prevent overlapping 
plt.tight_layout() 
plt.show() 

 

3. Modelling PV System with Weather and Shading Profile Data 

# -*- coding: utf-8 -*- 
""" 
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Created on Fri Jul 26 12:14:35 2024 
 
@author: rahul 
""" 
 
import pandas as pd 
import pvlib 
import matplotlib.pyplot as plt 
from pvlib.location import Location 
import matplotlib.dates as mdates 
 
# Load the data from the provided files 
weather_data = pd.read_csv('E://Filter/2021-12-21_weather_data_filter.csv') 
shading_data = pd.read_csv('E://Filter/Consolidated_Dec7_Data.csv') 
 
# Ensure the weather data has a proper timestamp index 
weather_data['period_end'] = pd.to_datetime(weather_data['period_end'], 
dayfirst=True) 
 
weather_data['period_end'] = 
weather_data['period_end'].dt.tz_localize('UTC').dt.tz_convert(None) 
shading_data['timestamp'] = pd.to_datetime(shading_data['timestamp'])  
 
 
# Clean up the shading_percentage column 
shading_data['shading_percentage'] = 
shading_data['shading_percentage'].str.rstrip('%').astype('float') / 100.0 
 
# Set index to timestamps 
weather_data.set_index('period_end', inplace=True) 
shading_data.set_index('timestamp', inplace=True) 
 
# Merge the weather data with the shading data 
combined_data = pd.merge(weather_data, shading_data, left_index=True, 
right_index=True, how='inner') 
 
# Filter out data points with low irradiance 
irradiance_threshold = 50  # Irradiance threshold in W/m² 
combined_data = combined_data[combined_data['ghi'] > irradiance_threshold] 
 
 
location = Location(latitude=-33.8688, longitude=151.2093, tz='Australia/Sydney') 
tilt = 50 
azimuth = 10 
surface_tilt = tilt 
surface_azimuth = azimuth 
 
# Retrieve module and inverter parameters 
cec_modules = pvlib.pvsystem.retrieve_sam('cecmod') 
pv_module = 'Suntech_Power_PLUTO215_Udm' 
module_parameters = cec_modules[pv_module] 
 
cec_inverters = pvlib.pvsystem.retrieve_sam('cecinverter') 
inverter = 'SMA_America__STP12000TL_US_10__480V_' 
inverter_parameters = cec_inverters[inverter] 
 
 
# Solar POA and Insolation Estimation 
 
 
# Calc solar position 
solar_position = location.get_solarposition(combined_data.index) 
 
# Calc AOI (angle of incidence) 
aoi = pvlib.irradiance.aoi(surface_tilt, surface_azimuth, 
                           solar_position['apparent_zenith'], 
solar_position['azimuth']) 
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# Calc POA sky diffuse 
poa_sky_diffuse = pvlib.irradiance.haydavies(surface_tilt, surface_azimuth, 
                                             combined_data['ghi'], 
combined_data['dhi'], combined_data['dni'], 
                                             solar_position['apparent_zenith'], 
solar_position['azimuth']) 
 
# Calc POA ground diffuse 
poa_ground_diffuse = pvlib.irradiance.get_ground_diffuse(surface_tilt, 
combined_data['ghi']) 
 
# Calc POA total 
poa_total = pvlib.irradiance.poa_components(aoi, combined_data['dni'], 
poa_sky_diffuse, poa_ground_diffuse) 
 
# Add POA to the combined data 
combined_data['poa_unshaded'] = poa_total['poa_global'] 
 
# Calc the POA irradiance for the shaded condition 
combined_data['poa_shaded'] = combined_data['poa_unshaded'] * (1 - 
combined_data['shading_percentage']) 
 
# Plot the POA irradiance and DC power output 
plt.figure(figsize=(14, 8)) 
 
plt.subplot(1, 1, 1) 
plt.plot(combined_data.index, combined_data['poa_unshaded'], label='POA 
Unshaded') 
plt.plot(combined_data.index, combined_data['poa_shaded'], label='POA Shaded') 
plt.xlabel('Time') 
plt.ylabel('POA Irradiance (W/m^2)') 
plt.title('POA Irradiance (Shaded vs. Unshaded)') 
plt.legend() 
 
 
# Temperature Parameters 
temperature_model_params = 
pvlib.temperature.TEMPERATURE_MODEL_PARAMETERS['sapm']['open_rack_glass_polymer'] 
 
 
combined_data['temp_cell_unshaded'] = pvlib.temperature.sapm_module( 
    poa_global=combined_data['poa_unshaded'], 
    temp_air=combined_data['air_temp'], 
    wind_speed=combined_data['wind_speed_10m'], 
    a=-3.56, 
    b=-0.075 
) 
 
# Calc DC power output using the pvsyst_dc model 
combined_data['dc_power_unshaded'] = pvlib.pvsystem.pvwatts_dc( 
    g_poa_effective=combined_data['poa_unshaded'], 
    temp_cell=combined_data['temp_cell_unshaded'], 
    pdc0=module_parameters['STC']*16, 
    gamma_pdc=-0.0038 
) 
 
combined_data['temp_cell_shaded'] = pvlib.temperature.sapm_module( 
    poa_global=combined_data['poa_shaded'], 
    temp_air=combined_data['air_temp'], 
    wind_speed=combined_data['wind_speed_10m'], 
    a=-3.56, 
    b=-0.075 
) 
 
combined_data['dc_power_shaded'] = pvlib.pvsystem.pvwatts_dc( 
    g_poa_effective=combined_data['poa_shaded'], 
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    temp_cell=combined_data['temp_cell_shaded'], 
    pdc0=module_parameters['STC']*16, 
    gamma_pdc=-0.0038 
     
) 
 
 
plt.rcParams.update({'font.size': 14}) 
plt.gca().xaxis.set_major_locator(mdates.HourLocator(interval=2))   
plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) 
 
# Plot the POA irradiance and DC power output side by side 
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(16, 8)) 
 
# POA Irradiance  
ax1.plot(combined_data.index, combined_data['poa_unshaded'], label='POA 
Unshaded') 
ax1.plot(combined_data.index, combined_data['poa_shaded'], label='POA Shaded') 
ax1.set_xlabel('Time') 
ax1.set_ylabel('POA Irradiance (W/m^2)') 
ax1.set_title('POA Irradiance (Shaded vs. Unshaded)') 
ax1.legend() 
ax1.xaxis.set_major_locator(mdates.HourLocator(interval=2)) s 
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) 
ax1.grid(True)  # Add gridlines 
 
# DC Power Output  
ax2.plot(combined_data.index, combined_data['dc_power_unshaded'], label='DC Power 
Unshaded') 
ax2.plot(combined_data.index, combined_data['dc_power_shaded'], label='DC Power 
Shaded') 
ax2.set_xlabel('Time') 
ax2.set_ylabel('DC Power Output (W)') 
ax2.set_title('DC Power Output (Shaded vs. Unshaded)') 
ax2.legend() 
ax2.xaxis.set_major_locator(mdates.HourLocator(interval=2))  
ax2.xaxis.set_major_formatter(mdates.DateFormatter('%H:%M')) 
ax2.grid(True)   
 
plt.tight_layout() 
plt.show() 

 

4. Consolidator Code to process 174.csv 

import pandas as pd 
import os 
from datetime import datetime 
 
 
fixed_date = "21/12/2021" 
 
# Folder path where files are stored 
folder_path = 
"H:\TETB\MyProject\GIS_data\June\9A_ACTUAL_MAIN\Zonal" 
file_names = [f for f in os.listdir(folder_path) if 
f.startswith('Zonal_PV3_Tetb_Str_Dec_Suns') and 
f.endswith('.csv')] 
 
 
reference_file_path = os.path.join(folder_path, "E://Tester.csv") 
reference_data = pd.read_csv(reference_file_path) 
 
 
consolidated_data = pd.DataFrame(columns=reference_data.columns) 
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# Process each file 
for file_name in file_names: 
    file_path = os.path.join(folder_path, file_name) 
     
    # Extract time from the file name 
    time_str = file_name.split('_')[-3:] 
    time_str = ":".join(time_str).replace('.csv', '') 
    datetime_str = f"{fixed_date} {time_str}" 
     
 
    timestamp = datetime.strptime(datetime_str, '%d/%m/%Y 
%H:%M:%S') 
     
 
    data = pd.read_csv(file_path, usecols=[1, 2], header=None, 
names=['Label', 'Count']) 
 
    row = {'Timestamp': timestamp} 
    for label, count in zip(data['Label'], data['Count']): 
        row[str(label)] = count   
 
    consolidated_data = pd.concat([consolidated_data, 
pd.DataFrame([row])], ignore_index=True) 
 
# Fill NaN with 0 (if any label is missing in a file) 
consolidated_data = consolidated_data.fillna(0) 
 
# Ensure all columns from the reference are present 
for col in reference_data.columns: 
    if col not in consolidated_data.columns: 
        consolidated_data[col] = 0 
 
# Reorder columns based on the reference file 
consolidated_data = consolidated_data[reference_data.columns] 
 
# Ensure 'Timestamp' is the first column 
if 'Timestamp' in consolidated_data.columns: 
    cols = ['Timestamp'] + [col for col in consolidated_data if 
col != 'Timestamp'] 
    consolidated_data = consolidated_data[cols] 
 
# Save the consolidated data to a CSV file 
output_path = os.path.join(folder_path, 
"E://Consolidated_june9A_Data.csv") 
consolidated_data.to_csv(output_path, index=False) 
 
 
output_path 
 

 

 

5.  ModelBuilder for Shadow Impact Analysis 

Modelbuilder 1 
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Inputs the Sun's Positions for the day as a Feature class and splits it into individual feature classes by 

OBJECT_ID to generate a singular feature class containing the Date, Time, Azimuth, and Elevation data. 

ModelBuilder 2 

  

It inputs the individual feature 

class generated for 

ModelBuilder 1. It generates a 

shadow panel, taking observer 

features as the 3D TETB 

Multipatch and obstruction 

features as NIDA, TYREE 

Surrounding Buildings, and TETB itself. It then outputs shadow panel 

layers with a panel size 2x2m. 
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Model Builder 3 

 

 

 

 

 

 

The output from ModelBuilder 2 is sent to ModelBuilder 3 to set 

the symbology of the shadow panels. 

 

 

. 
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6. PV String Shading Profile Model 

 

 PV String Analyser Model Inputs the 

Solar Azimuth and Elevation .csv from 

Appendix B.2 

 Performs Hill Shade Analysis and 

models shadow 

 Clips the raster based on the chosen 

PV String of study (String 7C Polygon) 

 Performs 2x Majority Filter to populate 

shadows with zero pixels. 

 After 2x Majority Filter, the raster is 

sent to perform Focal Statistics to 

smoothen sharp pixels to reduce noise. 

 A Reclassification table is formed based 

on pyscript Appendix B.7 ( 2nd Standard 

Deviation by identifying the upper and 

lower limit of the processed raster) ,  

 The Smoothened raster now gets 

reclassified based on the intervals 

generated in the reclassified table. 

 A majority filter is put through to 

populate the shadowing pixels. 

 Zonal Statistics and Histogram is 

performed on the final raster to get 

statistics of pixels within the area of the 

string. 
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7. Reclassifier Table Script (Arcpy) 

import arcpy 

 

def create_intervals_for_raster(raster_path, table_path): 

    try: 

        # Calculate raster properties 

        min_val = 
float(arcpy.GetRasterProperties_management(raster_path, 
"MINIMUM").getOutput(0)) 
        max_val = 
float(arcpy.GetRasterProperties_management(raster_path, 
"MAXIMUM").getOutput(0)) 
        mean = 
float(arcpy.GetRasterProperties_management(raster_path, 
"MEAN").getOutput(0)) 
        std_dev = 
float(arcpy.GetRasterProperties_management(raster_path, 
"STD").getOutput(0)) 
         
        arcpy.AddMessage(f"Raster properties: min={min_val}, 
max={max_val}, mean={mean}, std_dev={std_dev}") 
         
        intervals = [ 
            {"Interval": 2, "MinValue": max(min_val, mean - 2 * 
std_dev), "MaxValue": max(min_val, mean - std_dev)}, 
            {"Interval": 3, "MinValue": max(min_val, mean - 
std_dev), "MaxValue": max(min_val, mean - 0.5 * std_dev)}, 
            {"Interval": 4, "MinValue": max(min_val, mean - 0.5 * 
std_dev), "MaxValue": min(max_val, mean + 0.5 * std_dev)}, 
            {"Interval": 5, "MinValue": min(max_val, mean + 0.5 * 
std_dev), "MaxValue": min(max_val, mean + std_dev)}, 
            {"Interval": 6, "MinValue": min(max_val, mean + 
std_dev), "MaxValue": min(max_val, mean + 2 * std_dev)}, 
            {"Interval": 7, "MinValue": min(max_val, mean + 2 * 
std_dev), "MaxValue": max_val} 
        ] 
 
        # Explicitly handle 0 values shading 
        zero_interval = {"Interval": 1, "MinValue": 0, "MaxValue": 
0} 
         
        arcpy.AddMessage(f"Generated intervals: {[zero_interval] + 
intervals}") 
 
        # Check if the table already exists 
        if not arcpy.Exists(table_path): 
            arcpy.AddError(f"The table does not exist: 
{table_path}") 
            return 
         
        arcpy.AddMessage(f"Table exists: {table_path}") 
 
        # Insert rows into the existing table 
        with arcpy.da.InsertCursor(table_path, ["RasterName", 
"Interval", "MinValue", "MaxValue"]) as cursor: 
            cursor.insertRow((raster_path, 
zero_interval["Interval"], zero_interval["MinValue"], 
zero_interval["MaxValue"])) 
            arcpy.AddMessage(f"Inserted row: {zero_interval}") 
            for interval in intervals: 
                cursor.insertRow((raster_path, 
interval["Interval"], interval["MinValue"], interval["MaxValue"])) 
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                arcpy.AddMessage(f"Inserted row: {interval}") 
         
        arcpy.AddMessage(f"Intervals successfully added to table: 
{table_path}") 
        return table_path 
 
    except arcpy.ExecuteError as e: 
        arcpy.AddError(f"Geoprocessing error: {e}") 
        raise 
    except Exception as e: 
        arcpy.AddError(f"General error: {e}") 
        raise 
 
# Example usage 
if __name__ == "__main__": 
    raster_path = arcpy.GetParameterAsText(0)  # Input raster 
    table_path = arcpy.GetParameterAsText(1)   # Pre-generated 
table path 
 
    # Create intervals and add them to the pre-generated table 
    output_table = create_intervals_for_raster(raster_path, 
table_path) 
 
    # Set the output parameter to the created table 
    arcpy.SetParameterAsText(2, output_table) 

 


